函数极限的局部有界性定理我想问,这个标准证明为什么没有像数列极限有界性一样要考虑n≦N的情况在这里即|x|≦X的情况,就像:取M=max{ f(x)[x∈(-X,X)] ,1+|A| },则有|f(x)|≦M.应该是取M=max{ f(x) (x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 02:08:10
函数极限的局部有界性定理我想问,这个标准证明为什么没有像数列极限有界性一样要考虑n≦N的情况在这里即|x|≦X的情况,就像:取M=max{ f(x)[x∈(-X,X)] ,1+|A| },则有|f(x)|≦M.应该是取M=max{ f(x) (x
函数极限的局部有界性定理
我想问,这个标准证明为什么没有像数列极限有界性一样要考虑n≦N的情况在这里即|x|≦X的情况,就像:取M=max{ f(x)[x∈(-X,X)] ,1+|A| },则有|f(x)|≦M.
应该是取M=max{ f(x) (x∈[-X,X]) 1+|A| }
函数极限的局部有界性定理我想问,这个标准证明为什么没有像数列极限有界性一样要考虑n≦N的情况在这里即|x|≦X的情况,就像:取M=max{ f(x)[x∈(-X,X)] ,1+|A| },则有|f(x)|≦M.应该是取M=max{ f(x) (x
因为数列在n≦N部分只有有限个数,并且数列的每一项数都必须是非无穷大的实数.
但是函数在|x|≦X有无限个x的取值个数,并且|x|≦X的部分有可能有极限是无穷大是.
例如函数1/(x-1),当x→无穷大的时候,函数的极限是0,存在.但是x趋近于1的时候,函数值趋近于无穷大,所以对于函数1/(x-1),不是全定义域都有界,只是当x的绝对值很大的时候,是有界的.
但是将函数1/(x-1)转换为1/(n-1)却不能形成数列,因为第一项为无穷大,这样的数列是不行的.
就算是1/(x-1.4),在x趋近于1.4的时候,函数无界,但是对数列1/(n-1.4),没有第1.4项,所以这个对函数无界的值,在数列中不会被取到.
所以才叫局部有界性。数列极限有界性n≦N只有有限个值,所以对于整个数列都是有界的,而|x|≦X内函数值有无数个,可能是无界的,仅仅是在|x|>X这个局部有界不是整个函数有界
现在是证明局部有界,相当于在无穷远点的某领域内有界。如果证明(-∞,+∞)内的连续函数在有附加条件lim(x→∞)f(x)=A时有界,就是你的那种证法。