解线性方程组 X1-2X2+3X3-4X4=0 X2-X3+X4=0 X1+3X2-3X4=0 X解线性方程组X1-2X2+3X3-4X4=0X2-X3+X4=0X1+3X2-3X4=0X1-4X2+3X3-2X4=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 02:18:09
解线性方程组 X1-2X2+3X3-4X4=0 X2-X3+X4=0 X1+3X2-3X4=0 X解线性方程组X1-2X2+3X3-4X4=0X2-X3+X4=0X1+3X2-3X4=0X1-4X2+3X3-2X4=0
解线性方程组 X1-2X2+3X3-4X4=0 X2-X3+X4=0 X1+3X2-3X4=0 X
解线性方程组
X1-2X2+3X3-4X4=0
X2-X3+X4=0
X1+3X2-3X4=0
X1-4X2+3X3-2X4=0
解线性方程组 X1-2X2+3X3-4X4=0 X2-X3+X4=0 X1+3X2-3X4=0 X解线性方程组X1-2X2+3X3-4X4=0X2-X3+X4=0X1+3X2-3X4=0X1-4X2+3X3-2X4=0
解线性方程组 x1-x2-x3=2 x1+x2+4x3=0 3x1+5x3=3
解线性方程组 X1-2X2+3X3-4X4=0 X2-X3+X4=0 X1+3X2-3X4=0 X解线性方程组X1-2X2+3X3-4X4=0X2-X3+X4=0X1+3X2-3X4=0X1-4X2+3X3-2X4=0
1.用基础解系表示线性方程组的通解X1 +2X2+3X3-X4=13X1+2X+X3-X4=1 2X1+3X2+X3+X4=12X1+2X2+2X3-X4=15X1+5X2+2X3=22.3 1 0A= -4 -1 0 的特征值和特征向量.4 -8 2 1.用基础解系表示线性方程组的通解X1 +2X2+3X3-X4=13X1+2X2+X3-X
线性代数!解非其次线性方程组;【2x1+x2-x3+x4=1;4x1+2x2-2x3+x4=2;2x1+x-x3-x4=1】.
解线性方程组x1+x2+3x3+4x4=5 2x1+4x2+4x3+6x4=8 -x1-2x2-x3-2x4=-3
解线性方程组x1+x2+x3+x4=2;2x1+3x2+4x3+3x4=5;x1+3x2+5x3+3x4=4
解线性方程组 X1+2X2+3X3=4 3X1+5X2+7X3=9 5X1+8X2+11X3=14
解线性方程组 X1+2X2+3X3=4 3X1+5X2+7X3=9 5X1+8X2+11X3=14
应用克拉默法则解线性方程组:2X1-X2+3X3=53X1+X2-5X3=54X-X2+X3=9
解线性方程组:﹛2x1-x2+3x3=0 x1-3x2+4x3=0 -x1+2x2+3x3=0 x后面的数字全为下角马
求线性方程组(X1-X2+X4,X1-2X2+X3+4X4=3,2X1-3X2+X3+5X4=5)的一般解,
求解线性方程组的一般解方程组为 x1-x2+x4=2x1-2x2+x3+4x4=32x1-3x2+x3+5x4=5
求齐次线性方程组 x1+x2-2x4=0,4x1-x2-x3-x4=0,3x1-x2-x3=0的基础解系及其通解
解线性方程组{2X1+X2-2X3-2X4=0 X1+2X2+2X3+X4=0 X1-X2-4X3-3X4=0 解线性方程组{2X1+X2-2X3-2X4=0X1+2X2+2X3+X4=0X1-X2-4X3-3X4=0
已知线性方程组:x1+x2+x3=3,2x1+3x2+x3=1,3x1+4x2+2x3=4已知线性方程组:x1+x2+x3=3,2x1+3x2+x3=1,3x1+4x2+2x3=4求方程所有解第二题如图.
X1-X2-3X3+X4=1 X1-X2+2X3-X4=3 2X1-2X2-11X3+4X4=0 4X1-4X2+3X3-2X4=10 用消元法 解线性方程组
求线性方程组{X1-3x2-2x3-X4=1;3X1-8X2-4X3-X4=0;-2X1+X2-4X3+2X4=1;-X1-2X2-6X3+X4=2的一般解.
求线性方程组 2 x1+3 x2+x3=4;x1-2 x2+4 x3=-5;3 x1+8 x2-2 x3=13;4 x1-x2+9 x3=-6的全部解