设x1.x2,.xn是正数,求证(x1+x2+……+xn)(1/x1 +1/x2 +……+1/xn )≥n^2关于柯西不等式的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 21:43:01
设x1.x2,.xn是正数,求证(x1+x2+……+xn)(1/x1 +1/x2 +……+1/xn )≥n^2关于柯西不等式的
设x1.x2,.xn是正数,求证(x1+x2+……+xn)(1/x1 +1/x2 +……+1/xn )≥n^2关于柯西不等式的
设x1.x2,.xn是正数,求证(x1+x2+……+xn)(1/x1 +1/x2 +……+1/xn )≥n^2关于柯西不等式的
同学..这个已经接近柯西不等式的一般形式了
一般形式为
(a1^2+a2^2+.an^2)(b1^2+b2^2+...b^2)>=(a1b1+a2b2+.anbn)^2
令ai=√xi,bi=1/√xi就得到你要证的式子了
(x1+x2+……+xn)(1/x1 +1/x2 +……+1/xn )≥(1+1+.1)^2=n^2
设x1,x2,x3.xn都是正数,求证:x1^2/x2+x2^2/x2+.+xn-1^2/xn+xn^2/x1>=x1+x2+x3+.+xn.
设x1.x2,.xn是正数,求证(x1+x2+……+xn)(1/x1 +1/x2 +……+1/xn )≥n^2关于柯西不等式的
设x1,x2,……,xn是正数,求证(x1+x2+……+xn)(1/x1 +1/x2 +……+1/xn )≥n^2用柯西不等式解 已知A,B,C是互不相等得正数,求证(2/a+b)+(2/b+c) +(2/c+a)>9/a+b+c 设X1,X2…,XN∈R,且X1+X2+…+XN=1,求证 (X1^2/1+X1)+(X2^2/1+x2)+
已知X1*X2*X3*…*Xn=1,且X1*X2*X3*…*Xn是正数 ,求证(1+X1)(1+X2)…(1+Xn)>=2^n
如何解柯西不等式已知X1,X2,...Xn是正数求证:(X1+X2+..=Xn)(1/X1+1/X2+...+Xn)小于等于N^2
设x1,x2,.,xn为正整数.求证(x1+x2+.xn)(1/x1+1/x2+.1/xn)>=n平方
设x1,x2,...,xn为实数,证明:|x1+x2+...+xn|
设x1,x2,...,xn属于正实数且x1+x2+...+xn=1,求证:x1^2/1+x1+x2^2/1+x2+...+xn^2/1设x1,x2,...,xn属于正实数且x1+x2+...+xn=1,求证:x1^2/1+x1+x2^2/1+x2+...+xn^2/1+xn=>1/1+n
高中竞赛不等式证明问题x1,x2,...,xn为正数,x1+x2+x3+...+xn=1.求证:x1/√(1-x1)+x2/√(1-x2)+...+xn/√(1-xn)≥(√x1+√x2+...+√xn)/√(n-1)√表示根号重要不等式是怎么用的
已知X1+x2+X2+...+Xn=1,证明不等式:X1^2/(X1+X2)+X2^2/(X2+X3)+X3^2/(X3+X4)+.+Xn^2/(Xn+X1)>=1/2X1、X2、X3、...、Xn是正数
求证:[x1+...+xn]/1+[x1+...+xn]/[x1]/1+[x1]+...+[xn]/1+[xn][]是绝对值的意思
求教,均值不等式设x1,x2,……,xn为正实数,S=x1+x2+……+xn,求证:(1+x1)(1+x2)……(1+xn)
若正数x1,x2,…,xn满足x1+x2+…+xn=1(n≥2)求证:x1÷(1- x1)+ x2÷(1- x2)+…+xn÷(1-xn)≥n÷(n-1)
不等式证明求解已知:正数x1,x2,x3……xn 满足x1+x2+x3+……+xn=1已知:正数x1,x2,x3……xn 满足x1+x2+x3+……+xn=1求证:1/(x1*(1-x1^3)+1/(x2*(1-x2^3)+1/(x3*(1-x3^3)+……+1/(xn*(1-xn^3)>4
设x1,x2,…,xn是实数,|xi|
设x1,x2,...,xn为任意实数,求证:x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1+x1^2+x2^2+...+xn^2) < 根号n
设xi∈R+(i=1,2,n),求证:x1^x1x2^x2,xn^xn≥(x1x2,xn)^1/n(x1+x2+,+xn)
设x1,x2,...,xn属于正实数且x1+x2+...+xn=1,求证:x1^2/1+x1+x2^2/1+x2+...+xn^2/1+xn=>1/1+n 用柯西不等式