四棱锥P-ABCD的底面是边长为a的菱形,PC⊥底面ABCD,且PC=a,E是PA的中点,∠ABC=60°(1).求证:平面EDB⊥平面ABCD;(2).求点E到平面PBC的距离;(3).求二面角A-BE-D的平面角的正切值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:22:13

四棱锥P-ABCD的底面是边长为a的菱形,PC⊥底面ABCD,且PC=a,E是PA的中点,∠ABC=60°(1).求证:平面EDB⊥平面ABCD;(2).求点E到平面PBC的距离;(3).求二面角A-BE-D的平面角的正切值
四棱锥P-ABCD的底面是边长为a的菱形,PC⊥底面ABCD,且PC=a,E是PA的中点,∠ABC=60°
(1).求证:平面EDB⊥平面ABCD;
(2).求点E到平面PBC的距离;
(3).求二面角A-BE-D的平面角的正切值

四棱锥P-ABCD的底面是边长为a的菱形,PC⊥底面ABCD,且PC=a,E是PA的中点,∠ABC=60°(1).求证:平面EDB⊥平面ABCD;(2).求点E到平面PBC的距离;(3).求二面角A-BE-D的平面角的正切值
(1)证明:连结AC,BD,设交于点O,连结EO
ABCD为菱形,故AC⊥BD,且O为AC,BD的中点
又E为PA的中点
故EO//PC
而PC⊥平面ABCD
故EO⊥平面ABCD
EO∈平面EDB
故平面EDB⊥平面ABCD
(2)用体积法求距离,设距离为h,则:
VE-PBC=S三角形PBC*h/3=(a*a/2*h)/3= a^2h/6
=VP-ABC-VE-ABC
=S三角形ABC*PC/3-S三角形ABC*EO/3
=S三角形ABC(PC-EO)/3
=[1/2*a*a*sin60*(a-a/2)]/3
=√3a^3/24
a^2h/6=√3a^3/24
h=√3a/4
(3)过点A作AF⊥BE,连结OF
AC⊥BE
AC∩AF=A
BE⊥平面AOF
OF∈平面AOF内
故BE⊥OF
即二面角AFO即为所求的平面角
又AC⊥平面BED,OF∈平面BED内
故AC⊥OF
AB=a,OA=a/2,OB=√3a/2
EO=a/2,BE=a
EO/OF=BE/OB
OF=√3a/4
tan∠AFO=OA/OF
=(a/2)/(√3a/4)
=2√3/3

1 连接AC交BD于O,EO平行且等于1/2PC,OE⊥面ABCD。。所以平面EDB⊥平面ABCD
2 作OF⊥BC,,EO平行平面PBC, 所以of为所求距离
由底面平面图形可知,,OF=(根号3)/4 a
3 作OG⊥EB,角OGA为所求角
易得OE=a/2 OB= (根号3)/2 a 所以BE=a
所以OG=(根号3)/4 a ,OA=a/...

全部展开

1 连接AC交BD于O,EO平行且等于1/2PC,OE⊥面ABCD。。所以平面EDB⊥平面ABCD
2 作OF⊥BC,,EO平行平面PBC, 所以of为所求距离
由底面平面图形可知,,OF=(根号3)/4 a
3 作OG⊥EB,角OGA为所求角
易得OE=a/2 OB= (根号3)/2 a 所以BE=a
所以OG=(根号3)/4 a ,OA=a/2
所以正切为 8(根号3)/3

收起

已知四棱锥P-ABCD,底面ABCD是角A=60°,边长为a的菱形,又PA垂直于底ABCD,且PD=CD, 如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.求二面角A-BC-P的大小. 四棱锥P-ABCD的底面是边长为1的菱形,角BCD=60度,E是CD的中点,PA垂直底面ABCD,PA=根号3求二面角A-BE-P 四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,侧面PAD是边长为2的等边三角形,且侧面PAD,见补四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,侧面PAD是边长为2的等边三角形,且侧面PAD⊥底面AB 如图4,在四棱锥P-ABCD中,侧面PAD是正三角形,底面ABCD是边长为2的菱形, 四棱锥P-ABCD的底面是边长为a的菱形,平面PCD⊥平面ABCD,PC=a,PD=√2a,E为PA的中点,求证:平面EDB⊥平面ABCD 已知四棱锥P-ABCD它的底面是边长为a的菱形,∠ABC=120°,pc垂直于底面ABCD,又PC=a,E为PA的中点.已知四棱锥P-ABCD它的底面是边长为a的菱形,∠ABC=120°,pc垂直于底面ABCD,又PC=a,E为PA的中点。(1)证面E 在四棱锥P-ABCD中,底面ABCD是边长为a的正方形.E.F分别是PC.BD的中点.侧面PAD垂直底面ABCD.且PA等于P...在四棱锥P-ABCD中,底面ABCD是边长为a的正方形.E.F分别是PC.BD的中点.侧面PAD垂直底面ABCD.且PA等 在四棱锥P-ABCD中,底面ABCD是边长为a的正方形.E.F分别是PC.AD的中点.侧面PAD垂直底面ABCD.且PA等于P...在四棱锥P-ABCD中,底面ABCD是边长为a的正方形.E.F分别是PC.AD的中点.侧面PAD垂直底面ABCD.且PA等 已知四棱锥P-ABCD,底面ABCD是∠A=60°,边长为a的菱形,又PD⊥底ABCD已知四棱锥P-ABCD,底面ABCD是∠A=60°,边长为a的菱形.又PD⊥底ABCD且PD=CD,点M.N是棱AD,PC的中点1.证明:平面PMB⊥平面PAD; 2.求点A到平面PMB 如图,在四棱锥o-abcd中,底面abcd是边长为一的菱形,abc=45 已知四棱锥P-ABCD中,PA垂直平面ABCD,底面ABCD是边长为的a菱形,角BAD=120度,PA=b (1)求:平面PBD垂...已知四棱锥P-ABCD中,PA垂直平面ABCD,底面ABCD是边长为的a菱形,角BAD=120度,PA=b(1)求:平面PBD垂直平 已知四棱锥P-ABCD的底面ABCD为菱形,E是PD的中点.求证:PB∥ACE 四棱锥PABCD中,侧面PAD是边长为2的正三角形,底面ABCD为菱形,角BAD为60度,若PB为3,求二面角A—BC—P的大小.求几何方法 已知四棱锥P-ABCD的底面是边长为6的正方形,侧棱PA垂直底面ABCD,且PA等于八,则四棱锥的体积是多少 四棱锥P-ABCD的底面是边长为a的菱形,PC⊥底面ABCD,且PC=a,E是PA的中点,∠ABC=60°(1).求证:平面EDB⊥平面ABCD;(2).求点E到平面PBC的距离;(3).求二面角A-BE-D的平面角的正切值 四棱锥P-ABCD的底面是边长为a的菱形,PC⊥底面ABCD,且PC=a,E是PA的中点,∠ABC=60°(1).求证:平面EDB⊥平面ABCD;(2).求点E到平面PBC的距离;(3).求二面角A-BE-D的平面角的正切值 四棱锥P-ABCD中,底面ABCD是正方形,边长为a,PD是四棱锥的高.在这个四棱锥中放入一个球,求球的最大半径