如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:56:50

如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点
如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴
如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求抛物线的解析式及点A、B、C的坐标;
(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切?若存在,请求出点P的坐标;若不存在,请说明理由.

如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点
考点:二次函数综合题.专题:压轴题.分析:(1)根据题意中,抛物线的顶点坐标与N的坐标,可得抛物线的解析式,进而可得点A、B、C的坐标;
(2)分别求出过DM的直线,与过点AN的直线方程,可得DM与AN平行,且易得DM与AN相等;故四边形CDAN是平行四边形;
(3)首先假设存在,根据题意,题易得:△MDE为等腰直角三角形,进而可求得P的坐标,故存在P.由抛物线的顶点是M(1,4),
设解析式为y=a(x-1)2+4(a<0)
又抛物线经过点N(2,3),
所以3=a(2-1)2+4,
解得a=-1
所以所求抛物线的解析式为y=-(x-1)2+4=-x2+2x+3
令y=0,得-x2+2x+3=0,
解得:x1=-1,x2=3,
得A(-1,0)B(3,0);
令x=0,得y=3,
所以C(0,3).
(2)证明:直线y=kx+t经过C、M两点,
所以t=3k+t=4
即k=1,t=3,
直线解析式为y=x+3.
令y=0,得x=-3,
故D(-3,0),即OD=3,又OC=3,
∴在直角三角形COD中,根据勾股定理得:CD=OD2+OC2=32.
连接AN,过N做x轴的垂线,垂足为F.
设过A、N两点的直线的解析式为y=mx+n,
则-m+n=02m+n=3,
解得m=1,n=1
所以过A、N两点的直线的解析式为y=x+1
所以DC∥AN.在Rt△ANF中,AF=3,NF=3,
所以AN=32,
所以DC=AN.
因此四边形CDAN是平行四边形.
假设在x轴上方存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切,
设P(1,u)其中u>0,
则PA是圆的半径且PA2=u2+22过P做直线CD的垂线,垂足为Q,则PQ=PA时以P为圆心的圆与直线CD相切.
由第(2)小题易得:△MDE为等腰直角三角形,故△PQM也是等腰直角三角形,
由P(1,u)得PE=u,PM=|4-u|,PQ=PM2=|4-u|2
由PQ2=PA2得方程:(4-u)22=u2+22,
解得u=-4±26,舍去负值u=-4-26,符合题意的u=-4+26,
所以,满足题意的点P存在,其坐标为(1,-4+26).点评:本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.(你看看是不是)如果是求采纳

(1)根据题意中,抛物线的顶点坐标与N的坐标,可得抛物线的解析式,进而可得点A、B、C的坐标;
(2)分别求出过DM的直线,与过点AN的直线方程,可得DM与AN平行,且易得DM与AN相等;故四边形CDAN是平行四边形;
(3)首先假设存在,根据题意,题易得:△MDE为等腰直角三角形,进而可求得P的坐标,故存在P.
http://www.jyeoo.com/math/ques...

全部展开

(1)根据题意中,抛物线的顶点坐标与N的坐标,可得抛物线的解析式,进而可得点A、B、C的坐标;
(2)分别求出过DM的直线,与过点AN的直线方程,可得DM与AN平行,且易得DM与AN相等;故四边形CDAN是平行四边形;
(3)首先假设存在,根据题意,题易得:△MDE为等腰直角三角形,进而可求得P的坐标,故存在P.
http://www.jyeoo.com/math/ques/detail/f45f36d1-49b1-442b-8d81-96f1ffbef5ad自己看看吧。

收起

(1)根据题意中,抛物线的顶点坐标与N的坐标,可得抛物线的解析式,进而可得点A、B、C的坐标; (2)分别求出过DM的直线,与过点AN的直线方程,可得DM与AN平行,且易得DM与AN相等;故四边形CDAN是平行四边形; (3)首先假设存在,根据题意,题易得:△MDE为等腰直角三角形,进而可求得P的坐标,故存在P. http://www.jyeoo.com/math/ques/detail/f45f...

全部展开

(1)根据题意中,抛物线的顶点坐标与N的坐标,可得抛物线的解析式,进而可得点A、B、C的坐标; (2)分别求出过DM的直线,与过点AN的直线方程,可得DM与AN平行,且易得DM与AN相等;故四边形CDAN是平行四边形; (3)首先假设存在,根据题意,题易得:△MDE为等腰直角三角形,进而可求得P的坐标,故存在P. http://www.jyeoo.com/math/ques/detail/f45f36d1-49b1-442b-8d81-96f1ffbef5ad自己看看吧。考点:二次函数综合题.专题:压轴题.分析:(1)根据题意中,抛物线的顶点坐标与N的坐标,可得抛物线的解析式,进而可得点A、B、C的坐标; (2)分别求出过DM的直线,与过点AN的直线方程,可得DM与AN平行,且易得DM与AN相等;故四边形CDAN是平行四边形; (3)首先假设存在,根据题意,题易得:△MDE为等腰直角三角形,进而可求得P的坐标,故存在P.(1)由抛物线的顶点是M(1,4), 设解析式为y=a(x-1)2+4(a<0) 又抛物线经过点N(2,3), 所以3=a(2-1)2+4, 解得a=-1 所以所求抛物线的解析式为y=-(x-1)2+4=-x2+2x+3 令y=0,得-x2+2x+3=0, 解得:x1=-1,x2=3, 得A(-1,0)B(3,0); 令x=0,得y=3, 所以C(0,3). (2)证明:直线y=kx+t经过C、M两点, 所以t=3k+t=4 即k=1,t=3, 直线解析式为y=x+3. 令y=0,得x=-3, 故D(-3,0),即OD=3,又OC=3, ∴在直角三角形COD中,根据勾股定理得:CD=OD2+OC2=32. 连接AN,过N做x轴的垂线,垂足为F. 设过A、N两点的直线的解析式为y=mx+n, 则-m+n=02m+n=3, 解得m=1,n=1 所以过A、N两点的直线的解析式为y=x+1 所以DC∥AN.在Rt△ANF中,AF=3,NF=3, 所以AN=32, 所以DC=AN. 因此四边形CDAN是平行四边形. (3)假设在x轴上方存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切, 设P(1,u)其中u>0, 则PA是圆的半径且PA2=u2+22过P做直线CD的垂线,垂足为Q,则PQ=PA时以P为圆心的圆与直线CD相切. 由第(2)小题易得:△MDE为等腰直角三角形,故△PQM也是等腰直角三角形, 由P(1,u)得PE=u,PM=|4-u|,PQ=PM2=|4-u|2 由PQ2=PA2得方程:(4-u)22=u2+22, 解得u=-4±26,舍去负值u=-4-26,符合题意的u=-4+26, 所以,满足题意的点P存在,其坐标为(1,-4+26).点评:本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.(你看看是不是)如果是求采纳

收起

如图,已知平面直角坐标系xOy,抛物线y=-x2+bx+c过点A(4,0),b(1,3).(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,设抛物线上的点P(m,n)在 一道与函数有关的数学题如图,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线所对应的函数解析 、如图,已知抛物线 y=-x2+bx+c过点A(2,0),对称轴为y轴,顶点为P(1)求该抛物线的表达式,写出其顶点P的坐标,并画出其大致图象;2)把该抛物线先向右平移m个单位,再向下平移m个单位(m>0 ) 如图1,已知抛物线经过原点O和x轴上另一点D,顶点的坐标为(2,4)直角三角形ABC的顶点 如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点 已知抛物线的顶点坐标为E(1,0)求该抛物线求大神帮助 已知二次函数y=-1/4x²+3/2x的图像如图(1)求D坐标(2)将抛物线沿对称轴向上平移,(接着)交坐标轴于A B C三点,∠ACB=90°,求此时抛物线的解析式(3)设(2)中平移后的抛物线的顶点为M, 已知抛物线过点(-1,-4),切顶点坐标为(1,0),求抛物线的表达式 已知抛物线y=-2分之1x²+(5-m)x+m-3的对称轴是y轴,则抛物线的顶点坐标为? 如图,以A为顶点的抛物线与y轴交于点B、已知A、B两点的坐标分别为(3,0)、(0,4). (1)求抛物线的解 如图 已知抛物线y=ax2+bx+c交x轴与A,B,交y轴与C,AB=4,a-b+c=0,S三角形ABC=6,顶点为M.(1)求抛物线解析式(2)同配方法求抛物线的顶点M的坐标和对称轴.(3)若p(t,h)为线段BC上的一点S=S ACMP,求S与T 如图甲,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重.如图甲,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O 已知如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B、C.(1)求抛物线的解析式;(2)用配方法求出抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D, 如图,抛物线y=-x^2+bx+c过点A(4,0)B(1,3)(1)求该抛物线的解析式,并写出该抛物线的对称轴和顶点坐标(2)记该抛物线的对称轴为直线L,设抛物线上的点P(M,N)在第四象限,点P关于直线L的对称点为 如图,在平面直角坐标系中,O为原点,A点坐标为(-8,0),B点坐标为(2,0),C点坐标为(0,-4)(1)求图象经过A,B,C三点的抛物线的解析式;(2)设M点为(1)中抛物线的顶点,求直线MC的解析式 如图,在平面直角坐标系中,O为原点,A点坐标为(-8,0),B点坐标为(2,0),C点坐标为(0,-4)1)求图像经过A,B三点的抛物线的解析式2)设M点为(1)中抛物线的顶点,求直线MC的解析式 如图,已知与x轴交于点A(1,0)和B(5,0)的抛物线l1的顶点为C(3,4),抛物线l2与l1关于x轴对称,顶点为C'. (3)在l2上是否存在点M,使△ABM是以AB为斜边且一个角为30度的RT△?若存在,求M坐标, 如图,在平面直角坐标系中,已知点A坐标(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x^2从点O沿OA方向平移,与直线x=2交于P,顶点M到A点时停止移动.(1)设抛物线顶点M的横坐标为m①用m的代数式表