求解答第二十七题
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:45:54
求解答第二十七题
求解答第二十七题
求解答第二十七题
(1)原式=(1/2)*(3/2)*(2/3)*(4/3)*(3/4)*(5/4)*……*(99/100)*(101/100)【中间的互为倒数,相互约分,积为1】==(1/2)*(101/100)=101/200
(2)原式==(1/2)*(3/2)*(2/3)*(4/3)*(3/4)*(5/4)*……*((n-1)/n)*((n+1)/n)【中间的互为倒数,相互约分,积为1】==(1/2)*((n+1)/n)=(n+1)/(2n)
郭敦顒回答:
观察下列算式:
1-1/2²=3/4=1/2×3/2
(1-1/2²)(1-1/3²)=3/4×8/9=1/2×3/2×2/3×4/3
=1/2×(3/2×2/3)×4/3=1/2×4/3=2/3;
(1-1/2²)(1-1/3²)(1-1/4²)
=3/4×8/9×15/16...
全部展开
郭敦顒回答:
观察下列算式:
1-1/2²=3/4=1/2×3/2
(1-1/2²)(1-1/3²)=3/4×8/9=1/2×3/2×2/3×4/3
=1/2×(3/2×2/3)×4/3=1/2×4/3=2/3;
(1-1/2²)(1-1/3²)(1-1/4²)
=3/4×8/9×15/16=(1/2×3/2)×(2/3×4/3)×(3/4×5/4)
=1/2×(3/2×2/3)×(4/3×3/4)×5/4
=1/2×5/4=5/(2×4)=5/8;
(1-1/2²)(1-1/3²)(1-1/4²)(1-1/5²)
=3/4×8/9×15/16×24/25
=(1/2×3/2)×(2/3×4/3)×(3/4×5/4)×(4/5×6/5)
=1/2×(3/2×2/3)×(4/3×3/4)×(5/4×4/5)×6/5
=1/2×6/5=6/(2×5)=3/5;
(1)规律:
(1-1/2²)(1-1/3²)…(1-1/n²)
=3/4×8/9×…×(n²-1)/n²
=(1/2×3/2)×(2/3×4/3)×…×[(n-1)/n×(n+1)/n)]
=1/2×(3/2×2/3)×(4/3×3/4)×…×[(n/(n-1)×(n-1)/n] ×(n+1)/n
=1/2×(n+1)/n
=(n+1)/2n,
(1-1/2²)(1-1/3²)…(1-1/n²)=(n+1)/2n, n为正整数。
(1-1/2²)(1-1/3²)(1-1/4²)…(1-1/100²)
=1/2×(100+1)/100
=101/200,
(2)规律中已经给出:
(1-1/2²)(1-1/3²)…(1-1/n²)=(n+1)/2n, n为正整数。
收起