函数f(x)对任意的a,b属于R恒有f(a+b)=f(a)+f(b)-1,当x>0时,f(x)>1,证明:1=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:38:54
函数f(x)对任意的a,b属于R恒有f(a+b)=f(a)+f(b)-1,当x>0时,f(x)>1,证明:1=1
函数f(x)对任意的a,b属于R恒有f(a+b)=f(a)+f(b)-1,当x>0时,f(x)>1,证明:1=1
函数f(x)对任意的a,b属于R恒有f(a+b)=f(a)+f(b)-1,当x>0时,f(x)>1,证明:1=1
令a=b=0,得
f(0)=f(0)+f(0) -1
所以 f(0)=1
再令a=x>0,b=-x,得
则f(0)=f(x)+f(-x) -1
即 f(x)+f(-x)=2
因为f(x)>1,所以 f(-x)
函数f(x)对任意的a,b属于R恒有f(a+b)=f(a)+f(b)-1,当x>0时,f(x)>1,证明:f(x)是R上的增函数
定义域在R上的函数y=f(x),有f(x)≠0,当x>0时,f(x)>1,且对任意的a,b属于R,都有f(a+b)=f(a)+f(b) (1)证明f(0)=1 (2)证明对于任意x属于R,恒有f(x)大于0
定义在R上的函数y=f(x),f(0)不等于0,当x>0时,f(x)>1,且对任意的a,b属于R,f(a+b)=f(a)f(b).(1),求证,f(0)=1;(2),求证,对任意的x属于R,恒有f(x)>0;(3),证明:f(x)是R上的增函数;(4),若f(x)*f(2x-x平方)
定义在R上的函数y=f(x),f(0)不等于零,当x>0时,f(x)>1且对任意的x属于R,有 f(a+b)>f(a)f(b)求证:对任意的x属于R,恒有f(x)>0
已知函数f(x),x属于R,若对任意实数a,b都有f(a+b)=f(a)+f(b).求证f(x)为奇函数.
函数f(x)对任意的a,b属于R恒有f(a+b)=f(a)+f(b)-1,当x>0时,f(x)>1,证明:1=1
高一数学函数测试题:定义在R上的函数y=f(x),f(0)不等于0,当x>0时,f(x)>1,且对任意的a,b属于R,有f(a+b)=f(a)f(b).(1)证:f(0)=1;(2)证:对任意的x属于R,恒有f(x)>0;(3)证:f(x)是R上的增函数;(4)若
定义在R上的函数y=f(x),f(0)不等于0,当x>0时,f(x)>1,且对任意的a,b属于R都有f(a+b)=f(a)乘f(b)问:(1)求证:对任意的x属于R,恒有f(x)>0问题(2)f(x)是R上的增函数 (3)若f(x)
定义在R上的函数y=f(x),当x〉0时,f(x)〉1,且对任意的a,b属于R,有f(a+b)=f(a)f(b),(1)求f(0)=1;(2)求证:对任意的x属于R,恒有f(x)〉0(3)证明:f(x)是R上的增函数;(4)若f
函数F(x)定义域为R,对任意a b属于R都有f(a+b)=f(a)+f(b),且当X大于零时F(x)小于零恒成立.F(3)=-3此函数是单调减函数,而且是奇函数.请求出函数y=F(x)在[m,n]上的值域.其中m,n属于整数
定义在R的函数y=f(x),f(0)不等于0,当x>0时,f(x)>1,且对任意a,b属于R,都有f(a+b)=f(a)*f(b)(1)证明f(0)=1(2)证明:对任意x属于R,恒有f(x)>0(3)若f(x)>1/f(2x-x^2),求x的取值范围
单调减函数,且是奇函数函数F(x)定义域为R,对任意a b属于R都有f(a+b)=f(a)+f(b),且当X大于零时F(x)小于零恒成立.F(3)=-3请求出函数y=F(x)在[m,n]上的值域.其中m,n属于整数
1.函数f(x)对其定义域中的任意x都有f(x)=f(12-).设f(x)=0有n个根,且这n个根的和为1992.求n值.2.已知函数f(x)的定义域为R,但f(x)不为0,并且对任意a.b属于R.f(a+b)+F(a-b)=2f(a)f(b)恒成立判断f(x)的奇偶性若存
已知函数f(x)的定义域为R,且对任意a,b属于R,都有f(a+b)=f(a)+f(b),且当x>0时f(x)
已知函数f(x)的定义域为R,且对任意a,b属于R,都有f(a+b)=f(a)+f(b),且当x>o时,f(x)
定义在R上的函数f(x),对任意x属于R都有f(x)>0,f(0)不等于0,当x>0时,f(x)>1,且对任意的a,b属于R,有f(a+b)=f(a)乘以f(b)..1、求证f(0)=1 2、求证f(x)时R上的增函数.3、若f(x)乘以f(2x-x^2)>1,求x的取值范围
已知函数f x对任意的ab 属于R,都有f(a+b)=f(a)+f(b)-1已知函数f x对任意的ab 属于R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1(1)求证:f(x)是R上的增函数(2)若f(4)=5,f(m^2-2)
函数y=f(x),对任意a,b属于R,都有f(a)+f(b),且当X>0时,f(x)