在△ABC中,若A=60°,a=根号3,则(a+b+c)/(sinA+sinB+sinC)等于2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 04:17:42

在△ABC中,若A=60°,a=根号3,则(a+b+c)/(sinA+sinB+sinC)等于2
在△ABC中,若A=60°,a=根号3,则(a+b+c)/(sinA+sinB+sinC)等于2

在△ABC中,若A=60°,a=根号3,则(a+b+c)/(sinA+sinB+sinC)等于2
这是物理题吗?
三角形中有个关系式a/sinA=b/sinB=c/sinC
然后利用等比定理a/sinA=b/sinB=c/sinC=(a+b+c)/(sinA+sinB+sinC)
根据上面的已知条件sinA=二分之根号三,显然a/sinA=2所以可以得到
(a+b+c)/(sinA+sinB+sinC)=a/sinA=2