||||||满足条件|Z-i|=|3+4i|的复数Z在复平面上对应点的轨迹是( ).满足条件|Z-i|=|3+4i|的复数Z在复平面上对应点的轨迹是( ).A.一条直线; B.两条直线; C.圆 ; D.椭圆 .
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:14:10
||||||满足条件|Z-i|=|3+4i|的复数Z在复平面上对应点的轨迹是( ).满足条件|Z-i|=|3+4i|的复数Z在复平面上对应点的轨迹是( ).A.一条直线; B.两条直线; C.圆 ; D.椭圆 .
||||||满足条件|Z-i|=|3+4i|的复数Z在复平面上对应点的轨迹是( ).
满足条件|Z-i|=|3+4i|的复数Z在复平面上对应点的轨迹是( ).
A.一条直线; B.两条直线; C.圆 ; D.椭圆 .
||||||满足条件|Z-i|=|3+4i|的复数Z在复平面上对应点的轨迹是( ).满足条件|Z-i|=|3+4i|的复数Z在复平面上对应点的轨迹是( ).A.一条直线; B.两条直线; C.圆 ; D.椭圆 .
解法一:|3+4i|=√(3^2+4^2)=5
|Z-i|表示复平面上动点Z到定点C(0,i)的距离
|Z-i|=|3+4i|,即|Z-i|=5
表示复平面上动点Z到定点C(0,i)的距离恒为5
∴复数Z在复平面上对应点的轨迹是
以C为圆心,5为半径的圆.
选C
解法二:
设z=x+yi,则z-i=x+(y-1)i
|Z-i|=|3+4i|,
即√[x^2+(y-1)^2]=5
即x^2+(y-1)^2=25
∴复数Z在复平面上对应点的轨迹是
以C(0,1)为圆心,5为半径的圆.
C
设z=x+yi,
|Z-i|=|3+4i|,变为x^2+(y-1)^2=5
求满足下列条件的复数z: (1)z+(3-4i)=1;(z上有一横) (2)(3+i)z=4+2i
满足条件|Z-2i|=|3-4i的复数z在复平面上对应点的对应点的轨迹是
(3-i)Z=4+2i求满足下列条件的复数Z
||||||满足条件|Z-i|=|3+4i|的复数Z在复平面上对应点的轨迹是( ).满足条件|Z-i|=|3+4i|的复数Z在复平面上对应点的轨迹是( ).A.一条直线; B.两条直线; C.圆 ; D.椭圆 .
复数的轨迹满足条件|z-i|=|3+4i|的复平面上对应点的轨迹是?
复数Z满足条件|Z+i|+|Z-i|=4,则复数Z对应的点Z的轨迹是
满足条件|z|=|3+4i|的复数z在复平面上的对应点的轨迹是?
满足下列条件的复数z所对应的点z的轨迹是什么?(1)|z-i|=|z+i| (2)|z-5|+|z+5|=12 (3)|z-2i|-|z+2i|=2 (4)|z+1|=1 (5)|z-1|+|z+1|=2 (6)|z-1|-|z+1|=2
若复数Z满足/Z/=1,则/Z-3-4i/的最小值为?2.如果复数z满足/Z+1-i/=2,则/Z-2+i/的最大值是?3.满足条件/z-i/=/3+4i/的复数Z在复平面上对应点的轨迹是?(不好意思,能否简略的给点过程!)
设复数满足条件|z|=1,那么|z+2根号2+i|的最大值是?
满足条件|z+3-4i|=|z|的复数z在复平面内对应点的轨迹是 求详解
已知复数Z满足2Z-4=(3+Z)i,求|Z+i|
复数Z满足|3Z+1|=|Z-i|,则复数Z对应点的轨迹是
设复数z满足i(z+1)=-3+2i,则z的虚部是
复数z满足z=(2-3i)i,则z的实部是 ?帮帮忙,谢谢
已知复数Z满足条件|Z|=2 求复数1+根号3i+z的最大值
求满足条件|z-i|=|3+4i|的复数z在复平面上的对应点地轨迹
求满足条件|z-i|=|3-4i|的复数z在复平面上对应的点的轨迹