已知A,B,C均为正数,证明a平方+b平方+c平方+(1/a+1/b+1/c)平方≥6倍根号3,并确定a,b,c为何值时,等号成立

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:48:22

已知A,B,C均为正数,证明a平方+b平方+c平方+(1/a+1/b+1/c)平方≥6倍根号3,并确定a,b,c为何值时,等号成立
已知A,B,C均为正数,证明a平方+b平方+c平方+(1/a+1/b+1/c)平方≥6倍根号3,并确定a,b,c为何值时,等号成立

已知A,B,C均为正数,证明a平方+b平方+c平方+(1/a+1/b+1/c)平方≥6倍根号3,并确定a,b,c为何值时,等号成立
a^2+b^2+c^2+(1/a+1/b+1/c)^2
=a^2+b^2+c^2+1/a^2+1/b^2+1/c^2+2/ab+2/bc+2/ca
>=a^2+b^2+c^2+3(1/ab+1/bc+1/ca)=(a^2+3/ab)+(b^2+3/bc)+(c^2+3/ca)
>=2√(3a/b)+2√(3b/c)+2√(3c/a)
>=6√3
a=b=c=四次根号3取等

证明a平方除以b,加上b平方除以c,加上c平方除以a,大于等于a+b+c(a.b.c均为正数) 已知A,B,C均为正数,证明a平方+b平方+c平方+(1/a+1/b+1/c)平方≥6倍根号3,并确定a,b,c为何值时,等号成立 已知A,B,C均为正数,证明a平方+b平方+c平方+(1/a+1/b+1/c)平方≥6倍根号3,并确定a,b,c为何值时,等号成立 已知A,B,C均为正数,证明a平方+b平方+c平方+(1/a+1/b+1/c)平方≥6倍根号3,并确定a,b,c为何值时,等号成立 已知A,B,C均为正数,证明a平方+b平方+c平方+(1/a+1/b+1/c)平方≥6倍根号3,并确定a,b,c为何值时,等号成立 已知A,B,C均为正数,证明a平方+b平方+c平方+(1/a+1/b+1/c)平方≥6倍根号3,并确定a,b,c为何值时,等号成立 已知A,B,C均为正数,证明a平方+b平方+c平方+(1/a+1/b+1/c)平方≥6倍根号3,并确定a,b,c为何值时,等号成立 已知A,B,C均为正数,证明a平方+b平方+c平方+(1/a+1/b+1/c)平方≥6倍根号3,并确定a,b,c为何值时,等号成立 已知A,B,C均为正数,证明a平方+b平方+c平方+(1/a+1/b+1/c)平方≥6倍根号3,并确定a,b,c为何值时,等号成立 已知A,B,C均为正数,证明a平方+b平方+c平方+(1/a+1/b+1/c)平方≥6倍根号3,并确定a,已知A,B,C均为正数,证明a平方+b平方+c平方+(1/a+1/b+1/c)平方≥6倍根号3,并确定a,b,c为何值时,等号成立 请用绝对值的性质证明:已知:a,b,c均为正数.a+b>c,且|a-b|b,|a-c|请用代数的方法证明。 a,b,c,d为正数,证明:(1)a+b a,b,c,d为正数,证明:(1)a+b 已知a+b+c=1,a,b,c均为正数,证明:c^2/a + a^2/b + b^2/c >=1 ? 已知三角形三边abc,m为正数,证明:[a/(a+m)]+[b/(b+m)]>[c/(c+m)] 谁能帮证明一下, 已知a,b,c属于R,a+b+c>0,ab+bc+ca>0,abc>0,用反证法证明:a,b,c均为正数 已知a,b,c均为正数,a^2+b^2+c^2=1,证明(a+b+c)^3≤3,例二 已知 a,b,c均为正数.证明:a^2+b^2+c^2+(1/a+1/b+1/c)^2 ≥ 6√3