求函数y=3cos^2x-4cosx+1 ,x属于[π/3,2π/3]的值域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:37:04
求函数y=3cos^2x-4cosx+1 ,x属于[π/3,2π/3]的值域
求函数y=3cos^2x-4cosx+1 ,x属于[π/3,2π/3]的值域
求函数y=3cos^2x-4cosx+1 ,x属于[π/3,2π/3]的值域
π/3
y=3cos^2x-4cosx+1
=3(cosx-2/3)^2-1/3
x属于[π/3,2π/3]
当cosx=2/3 时有最小值为:-1/3
当cos2π/3=-1/2 时有最大值为:15/4
所以其值域为[-1/3,15/4]
[-1/3,13/4-2根号3
y=3cos^2x-4cosx+1=3(cosx-2/3)-1/3
π/3<=x<=2π/3
cos2π/3<=cosx<=cosπ/3
1/2<=cosx<=根号3/2
函数y=3(cosx-2/3)^2-1/3的对称轴是cosx=2/3
1/2<2/3
根号3/2>2/3
所以cosx=2/3时,函数值最小为-1/3
2/3-1/...
全部展开
y=3cos^2x-4cosx+1=3(cosx-2/3)-1/3
π/3<=x<=2π/3
cos2π/3<=cosx<=cosπ/3
1/2<=cosx<=根号3/2
函数y=3(cosx-2/3)^2-1/3的对称轴是cosx=2/3
1/2<2/3
根号3/2>2/3
所以cosx=2/3时,函数值最小为-1/3
2/3-1/2=1/6
根号3/2-2/3=(3根号3-4)/6约等于1.2/6
所以当cosx=根号3/2时,函数值最大为
3(根号3/2-2/3)^2-1/3=3(3/4+4/9-2根号3/3)-1/3=43/12-2根号3-1/3=39/12-2根号3=13/4-2根号3
所以值域为[-1/3,13/4-2根号3]
收起