设x,y,z∈R+,求证 2z2-x2-y2/(x+y)+2x2-y2-z2/(y+z)≥x2+z2-2y2/(x+z)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:10:51
设x,y,z∈R+,求证 2z2-x2-y2/(x+y)+2x2-y2-z2/(y+z)≥x2+z2-2y2/(x+z)
设x,y,z∈R+,求证 2z2-x2-y2/(x+y)+2x2-y2-z2/(y+z)≥x2+z2-2y2/(x+z)
设x,y,z∈R+,求证 2z2-x2-y2/(x+y)+2x2-y2-z2/(y+z)≥x2+z2-2y2/(x+z)
请注意括号的正确使用,以免造成误解.
不失一般性,令x≧y≧z>0.则:
x^2≧y^2≧z^2、x+y≧x+z≧y+z,∴1/(y+z)≧1/(x+z)≧1/(x+y).
考查下列两组数:x^2≧y^2≧z^2、1/(y+z)≧1/(x+z)≧1/(x+y).
由排序不等式:同序和不小于乱序和. 得:
x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≧y^2/(y+z)+z^2/(x+z)+x^2/(x+y)、
x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≧z^2/(y+z)+x^2/(x+z)+y^2/(x+y).
上述两式相加,得:
2x^2/(y+z)+2y^2/(x+z)+2z^2/(x+y)
≧(y^2+z^2)/(y+z)+(z^2+x^2)/(x+z)+(x^2+y^2)/(x+y),
∴(2z^2-x^2-y^2)/(x+y)+(2x^2-y^2-z^2)/(y+z)≧(x^2+z^2-2y^2)/(x+z).
设x,y,z∈R+,求证 2z2-x2-y2/(x+y)+2x2-y2-z2/(y+z)≥x2+z2-2y2/(x+z)
设x,y,z∈R+,求证 2z2-x2-y2/(x+y)+2x2-y2-z2/(y+z)≥x2+z2-2y2/(x+z)
已知x,y,z∈R+.求证(1+x2)(1+y2)(1+z2)≥8xyz
已知X,Y,Z∈R,且X+Y+Z=1,求证X2+Y2+Z2≥1/3
设x,y,z属于R,且(2x+y-z)/(根号下(X2+2y2+z2))的最大值
设x,y,z为正实数且x>=y>=z,求证 X2*Y/Z + Y2*Z/X + Z2*X/Y>=X2+Y2+Z2
求证x2+y2+z2>=(x+y+z)平方/3
已知:实数 x y z 不全为 0 求证:√x2+xy+y2 + √y2+yz+z2 + √z2+zx+x2 >3/2 (x+y+z)
设x2+y2+z2=1,求x+2y+2z的最大值
设x2+y2+z2=1,求x+2y+2z的最大值
x2-(y-z)2------------ (x+y)2-z2
已知a,b,c∈(0,+∞),若x,y,z∈R,求证(b+c)x2/a+(c+a)y2/b+(a+b)z2/c≥2(xy+yz+zx).⑵设a,b,c∈R,且a+b+c=1,求证a2+b2+c2≥1/3.备注:x,y,z,abc后面的2都是平方.
x,y,z分别为三角形的三边 求证(x2+y2-z2)/2xy+(x2+z2-y2)/2xz+(y2+z2-x2)/2yz>1x2指x的平方
高一 数学 数学 请详细解答,谢谢! (13 21:39:6)已知X,Y,Z∈R,且X+Y+Z=1,求证X2+Y2+Z2≥1/3
x,y,z为正实数 求证 x2/(y2+z2+yz)+y2/(z2+x2+zx)+z2/(x2+y2+xy)>=1
4月3日平均值不等式及其应用5变式4设x,y ,z∈R,且x2+y2+z2=1 ,求S=xy/z+xz/y+yz/x的最小值.
已知xyz满足z+y+z=xyz 求证:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz
若x、y满足3(x2+y2+z2)=(x+y+z)2,求证:x=y=z.