小学六年级数学下册“七桥问题”如何一笔画问题古时有一个城市,中间有一条河分成两半,河中有两个小岛用七座桥把两边陆地和小岛相连,其中A岛有四座桥与两边陆地相连,两边各两座
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:40:14
小学六年级数学下册“七桥问题”如何一笔画问题古时有一个城市,中间有一条河分成两半,河中有两个小岛用七座桥把两边陆地和小岛相连,其中A岛有四座桥与两边陆地相连,两边各两座
小学六年级数学下册“七桥问题”如何一笔画问题
古时有一个城市,中间有一条河分成两半,河中有两个小岛用七座桥把两边陆地和小岛相连,其中A岛有四座桥与两边陆地相连,两边各两座。B岛有两座桥与两边陆地,两边各一座。A岛与B岛有一座桥相连。怎样一次走完七座桥又回到原地。
小学六年级数学下册“七桥问题”如何一笔画问题古时有一个城市,中间有一条河分成两半,河中有两个小岛用七座桥把两边陆地和小岛相连,其中A岛有四座桥与两边陆地相连,两边各两座
这个问题看似简单,然而许多人作过尝试始终没有能找到答案.因此,一群大学生就写信给当时年仅20岁的大数学家欧拉,请他分析一下.欧拉从千百人次的失败中,以深邃的洞察力猜想,也许根本不可能不重复地一次走遍这七座桥.为了证明这种猜想是正确的,欧拉用简单的几何图形来表示陆地和桥.他是这样解决问题的:既然陆地是桥梁的连接地点,不妨把图中被河隔开的陆地看成A、B、C、D 4个点,7座桥表示成7条连接这4个点的线,如图“七桥连线”所示.
七桥连线简化图
再把它简化成图形,就成了右图“七桥连线简化图”.
在说欧拉的推论前,我们先说说偶点和奇点的问题.
奇偶数点图
什么是偶点呢?一个点如果有偶数条边,它就是偶点.如下面“奇偶数点图”的A、B、E、F点.反之,如果一个点有奇条边数,它就是奇点.如图中的C、D这两点.
偶点和奇点与能不能一次通过这座桥有关系吗?别急,我们慢慢来说.
欧拉认为,如果一个图能一笔画成,那么一定有一个起点开始画,也有一个终点.图上其它的点是“过路点”——画的时候要经过它.
“过路点”有什么特点呢?它应该是“有进有出”的点,有一条边进这点,那么就要有一条边出这点,不可能是有进无出或有出无进.如果只进无出,它就是终点;如果有出无进,它就是起点.因此,在“过路点”进出的边总数应该是偶数,即“过路点”是偶点.
如果起点和终点是同一点,那么它也是属于“有进有出”的点,因此必须是偶点,这样图上全体点都是偶点.
如果起点和终点不是同一点,那么它们必须是奇点,因此这个图最多只能有二个奇点.
把上面所说的归纳起来,说简单点就是:
能一笔画的图形只有两类:一类是所有的点都是偶点.另一类是只有二个奇点的图形.
现在对照七桥问题的图,我们回过头来看看图3,A、B、C、D四点都连着三条边,是奇数边,并且共有四个,所以这个图肯定不能一笔画成.
欧拉对“七桥问题”的研究是图论研究的开始,同时也为拓扑学的研究提供了一个初等的例子.
事实上,中国民间很早就流传着这种一笔画的游戏,从长期实践的经验,人们知道如果图的点全部是偶点,可以任意选择一个点做起点,一笔画成.如果是有二个奇点的图形,那么就选一个奇点做起点以顺利的一笔画完.要是不信的话,你可以试试上图“奇偶数点图”,选择C、D两个奇点来画,肯定能一笔画成.只是很可惜,长期以来,人们只把它作为一类有趣的游戏,没有对它引起重视,也没有数学家对它进行经验总结和研究,这不能不说是一种遗憾.
根本无解~~~
应该不能吧
没题怎么知道?
这个是不能一笔画的。
18世纪著名古典数学问题之一。在 哥尼斯堡 的一个公园里,有七座桥将 普雷格尔 河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。
有关 图论 研究的热点问题。18世纪初 普鲁士 的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共...
全部展开
18世纪著名古典数学问题之一。在 哥尼斯堡 的一个公园里,有七座桥将 普雷格尔 河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。
有关 图论 研究的热点问题。18世纪初 普鲁士 的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是 柯尼斯堡七桥问题 。 欧拉 用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和 桥 简化为一个 网络 ,把七桥问题化成判断连通网络能否 一笔画 的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是 它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2.
当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。
Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示
[图] 著名数学家欧拉 。
后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最後回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。
七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.
欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。
接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案
收起