设A=[0 0 1;1 1 x;1 0 0].问当x为何值时,矩阵A能对角化?本题是书上的一道例题,我看其中的一部分有些晕:“对应特征值-1,可求得线性无关的特征向量恰有1个“.我怎么算这个特征向量都是含有x为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:25:17
设A=[0 0 1;1 1 x;1 0 0].问当x为何值时,矩阵A能对角化?本题是书上的一道例题,我看其中的一部分有些晕:“对应特征值-1,可求得线性无关的特征向量恰有1个“.我怎么算这个特征向量都是含有x为
设A=[0 0 1;1 1 x;1 0 0].问当x为何值时,矩阵A能对角化?
本题是书上的一道例题,我看其中的一部分有些晕:
“对应特征值-1,可求得线性无关的特征向量恰有1个“.
我怎么算这个特征向量都是含有x为未知数的:[-1 ; (1-x)/2 ; 1],请问这样的特征向量也算一个吗?该如何理解呢?
设A=[0 0 1;1 1 x;1 0 0].问当x为何值时,矩阵A能对角化?本题是书上的一道例题,我看其中的一部分有些晕:“对应特征值-1,可求得线性无关的特征向量恰有1个“.我怎么算这个特征向量都是含有x为
矩阵可对角化的充要条件是对于每个特征值αi,有αi的重数等于度数
也就是说,比如矩阵A可以对角化,且有一个特征值a且a为5重根,则对于a必须有5个线性无关的特征向量.
这题
A=[0 0 1;1 1 x;1 0 0]
A的特征多项式为-α^3+α^2+α-1
解得α1=α2=1 α3=-1
对于特征值1
A的特征方程为 (x1-x3=0;x1+x*x3=0)
A有特征向量(0,1,0)要使另外一个特征向量与之线性无关,必须有x1=x3≠0
因为x1+x*x3=0 得到 x1(1+x)=0,因为x1不等于0,那么只能1+x=0
所以x=-1
因为对于不同特征值的特征向量必线性无关,所以对于α3=-1无需考虑
因此x=-1时,A可以对角化