如果f(x)为偶函数.且f `(0)存在,证明 f ` (0) = 0如果f(x)为偶函数,且f'(x)存在.证明:f'(0)=0.是不是要用到 偶函数的导数是奇函数的定理啊?f(-x)=f(x) 若f'(x)存在,对上面的等式两边求导得 [f(-x)]'=f'(

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 04:23:58

如果f(x)为偶函数.且f `(0)存在,证明 f ` (0) = 0如果f(x)为偶函数,且f'(x)存在.证明:f'(0)=0.是不是要用到 偶函数的导数是奇函数的定理啊?f(-x)=f(x) 若f'(x)存在,对上面的等式两边求导得 [f(-x)]'=f'(
如果f(x)为偶函数.且f `(0)存在,证明 f ` (0) = 0
如果f(x)为偶函数,且f'(x)存在.证明:f'(0)=0.
是不是要用到 偶函数的导数是奇函数的定理啊?
f(-x)=f(x)
若f'(x)存在,对上面的等式两边求导得
[f(-x)]'=f'(x)
这个东西 我可以理解成 函数的相等 他们的导数也相等吗?
我看的同济第五版的书 是证明f0=0 不是fx=0
=-lim[f(-x)-f(0)]/(-x)
这个怎么来的?

如果f(x)为偶函数.且f `(0)存在,证明 f ` (0) = 0如果f(x)为偶函数,且f'(x)存在.证明:f'(0)=0.是不是要用到 偶函数的导数是奇函数的定理啊?f(-x)=f(x) 若f'(x)存在,对上面的等式两边求导得 [f(-x)]'=f'(
如果f(x)为偶函数.且f `(0)存在,
f'(0)=lim[f(x)-f(0)]/x;(x→0)
=lim[f(-x)-f(0)]/x
=-lim[f(-x)-f(0)]/(-x)
=-f'(0)
f'(0)=0.

数学中有一个定理:奇涵数的导数是偶涵数,偶涵数的导数是奇涵数,所以上面那题是:
因为f(x)是偶涵数,且f'(0)存在,所以f'(x)=0

如果f(x)为偶函数 且f'(0)存在.证明:f'(x)=0. 如果f(x)为偶函数,且f'(0)存在,证明f'(0)=0 如果f(x)为偶函数,且f'(0)存在,如何证明f'(0)=0? 如果f(x)为偶函数.且f `(0)存在,证明 f ` (0) = 0如果f(x)为偶函数,且f'(x)存在.证明:f'(0)=0.是不是要用到 偶函数的导数是奇函数的定理啊?f(-x)=f(x) 若f'(x)存在,对上面的等式两边求导得 [f(-x)]'=f'( 如果f(x)为偶函数,且f(0)的导数存在,证明f(0)的导数等于零. 如果f(x)为偶函数,且存在,用导数定义证明f'(0)=0 如果f(x)为偶函数,且f'(x)存在.证明:f'(x)=0. 证明导数为0如果f(x)为偶函数,且f'(0)存在,证明f'(0)=0 如果f(x)为偶函数.且f `(0)存在,证明 f ` (0) = 0如果f(x)为偶函数.且f `(0)存在,f'(0)=lim[f(x)-f(0)]/x;(x→0) =lim[f(-x)-f(0)]/x =-lim[f(-x)-f(0)]/(-x) =-f'(0) f'(0)=0.=-lim[f(-x)-f(0)]/(-x) 怎么来的?为什么可以这么 如果函数F(X)为偶函数,且f(0)存在,证明f(0)的倒数等于0? 帮忙解决几道难题1.如果f(x)为偶函数.且f'(0)存在.证明f'(o)=0. 若f(x)为偶函数,且f’(x)存在,则f’(0)等于如题 求 f(x)为偶函数且f'(0)存在,怎么证明f'(0)=0? 若f(x)为偶函数且f'(0)存在,计算f'(0) 求指导 如果f(x)为偶函数,且f(0)的导数存在,证明f(x)在x=0处的导数=0 若f(x)是偶函数且f'(0)(f(0)的导数)存在,证明:f'(0)=0. 1.设f(x)为偶函数,且f'(0)存在,证明f'(0)=02.证明不等式|arctanX2-arctanX1|≤|X2-X1| 设f(x)是偶函数,且f‘(0)存在,证明f'(0)=0