),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:06:10

),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的
),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线)于G,H点,如图(2)
(1)问:始终与△AGC相似的三角形有△HAB及△HGA;
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);
(3)问:当x为何值时,△AGH是等腰三角形

),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的
(1)∵△ABC与△EFD为等腰直角三角形,AC与DE重合,
∵∠HAG=∠B=45°,∠H+∠HAC=45°,∠HAC+∠CAG=45°,
∴∠H=∠CAG,
∴△HAB∽△HGA,
∴始终与△AGC相似的三角形有△HAB和△HGA;
故答案为:△HAB和△HGA.
(2)∵△AGC∽△HAB,
∴AC:HB=GC:AB,即9:y=x:9,
∴y=81/x(9/2≥x>0),
答:y关于x的函数关系式为y=81/x
(9/2≥x>0).
(3)当CG<1/2BC时,∠GAC=∠H<∠HAG,
∴AC<CH,
∵AG<AC,
∴AG<GH,
又∵AH>AG,AH>GH,
此时,△AGH不可能是等腰三角形,
当CG=1/2BC时,G为BC的中点,H与C重合,△AGH是等腰三角形,
此时,GC=9/2
,即x=9/2
当CG>1/2
BC时,由(1)△AGC∽△HGA,
所以,若△AGH必是等腰三角形,只可能存在AG=AH,
若AG=AH,则AC=CG,此时x=9,
当CG=BC时,注意:DF才旋转到与BC垂直的位置,此时B,E,G重合,∠AGH=∠GAH=45°,所以△AGH为等腰三角形,所以CG=9/2
综上所述,当x=9或x=9/2
或9/2时,△AGH是等腰三角形.

如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.(1)如图1,点E在AB上,点D与C重合,F为线段BD的中点.则线段EF与FC的数量关系是_________________;∠EFD的度数为__________;(2)如图2,在图1的基 如图,△ABC于△EFD为等腰直角三角形,AC与DE重合,AB=AC=AE=EF=9,∠BAC=∠DEF=90°1)求证:△AGC相似△HAB:(2)设CG=X,BH=Y,求y关于x的函数关系式 如图,△ABC于△EFD为等腰直角三角形,AC与DE重合,AB=AC=AE=EF=9,∠BAC=∠DEF=90°(1)求证:△AGC相似△HAB:(2)设CG=X,BH=Y,求y关于x的函数关系式 如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=4,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或 如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或 ),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的 21、如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF 21、如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF △ABC和△DBE均为等腰直角三角形,AD与CE是否垂直? △ABC和△DBE均为等腰直角三角形,AD与CE是否垂直? 一道初三几何题,如图,△ABC是等腰直角三角形,∠BAC=90°,D是BC中点,三角形EFD也是等腰直角三角形请问能证明AD≠EF吗?望高手指教, 已知D为等腰直角三角形ABC斜边BC上如图1,:已知D为等腰直角三角形ABC斜边BC上的一个动点(D不与B、C均不重合),连结AD,△ADE是等腰直角三角形,DE为斜边,连结CE①判断∠ECD的度数,并说明理由② 若D为等腰直角三角形ABC的BC边上任一点,且DE⊥AD,BE⊥AB,(1)求证△ADE为等腰直角三角形 在RT三角形ABC中,角BAC=90度,AB=AC,点D是BC的中点,AF=BE,求证三角形EFD为等腰直角三角形 △ABC中,2cosBsinA=sinC 则△ABC形状为( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形 △ABC为等腰直角三角形,G为重心,GD‖AB,求DG:BC的值 已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°那个“易知△ABC与△BCD均为等腰直角三角形”怎么证? 如图:以△ABC的边AB.AC为直角向外作等腰直角三角形ABE和三角形ACD,M是BC的中点,探如图1.以三角形ABC为边AB,AC为直角边向外作等腰直角三角形ABE和三角形ACD,M是BC的中点(1)当角BAC=90°线段AM与线