1 1X2+2X3+3X4.n(n+1)(n+2)/

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:58:23

1 1X2+2X3+3X4.n(n+1)(n+2)/
1 1X2+2X3+3X4.n(n+1)(n+2)
/

1 1X2+2X3+3X4.n(n+1)(n+2)/
A=1X2+2X3+3X4+……+(n-1)n+n(n+1)=(1/3)n(n+1)(n+2) an=n(n+1)
这是一个公式.
证明:
①当n=1,成立;
②当n=k, 假设 成立;
③当n=k+1, 再利用n=k成立获得的等式,证n=k+1,等式也成立;
等式得证
具体如下:
(1)当n=1时,左边=1*2=2, 右边=1/3*1*2*3=2=左边,所以A成立.【设等式为A,不在抄写】
(2)假设n=k(k>=1)时成立,则当n=k+1时,
1*2+2*3+……+n(n+1)+(n+1)(n+2)=n(n+1)(n+2)/3+(n+1)(n+2)=(n+1)(n+2)[n/3+1]=
(n+1)(n+2)(n+3)/3=[(n+1)][(n+1)+1][(n+1)+2]/3
由(1)(2)可知原等式A成立.故1X2+2X3+3X4+……+(n-1)n+n(n+1)=(1/3)n(n+1)(n+2)
是正确的.
【数学百分百】团队为您解答.

=(1-1/2)+(1/2-1/3)+...+(1/n+1-1/n+2)
=1-1/(n+2)
=(n+1)/(n+2)

希望能帮你忙,不懂请追问,懂了请采纳,谢谢