合并同类项的法则运用上课用啊帮帮忙吧

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:56:10

合并同类项的法则运用上课用啊帮帮忙吧
合并同类项的法则运用
上课用啊帮帮忙吧

合并同类项的法则运用上课用啊帮帮忙吧
所含字母相同,且相同字母的指数也相同的项叫做同类项.将多项式中的同类项合并为一项,叫做合并同类项.合并时,将系数相加,字母和字母指数不变.(我们刚学完)
例:3xy-4b+4xy-2b
=(3+4)xy+(-4-2)b
=7xy-6b

把多项式中的同类项合并成一项,叫做合并同类项。
例如:xy的平方-5分支1xy的平方;
xy²-5分之1xy²=(1-5分之1)xy=5分之4xy²;

数学术语  合并同类项就是逆用乘法分配律
  把多项式中同类项合成一项,叫做合并同类项(combining like terms)。
  如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。如2ab与-3ab,m2n与m2n都是同类项。特别地,所有的常数项也都是同类项。
  把多项式中的同类项合并成一项,叫做同类项的合并(或合...

全部展开

数学术语  合并同类项就是逆用乘法分配律
  把多项式中同类项合成一项,叫做合并同类项(combining like terms)。
  如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。如2ab与-3ab,m2n与m2n都是同类项。特别地,所有的常数项也都是同类项。
  把多项式中的同类项合并成一项,叫做同类项的合并(或合并同类项)。同类项的合并应遵照法则进行:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
  为什么合并同类项时,要把各项的系数相加而字母和字母的指数都不改变,这有什么理论依据吗?
  其实,合并同类项法则是有其理论依据的。它所依据的就是大家早已熟知了的乘法分配律,a(b+c)=ab+ac。合并同类项实际上就是乘法分配律的逆向运用。即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。
编辑本段部分例题
  【例1】合并同类项-8a2b+6a2b-3a2b
  分析 同类项合并时,系数相加减,字母和各字母的指数都不改变。
  解答 原式=(-8+6-3)a2b=-5 a2b。
  【例2】合并同类项
  -x2y+3-2xy2+5x2y-4xy2-7
  分析 在一个多项式中,往往含有几个不同的单项式,可运用加法交换律及合并同类项法则进行合并。注意不要把某些项漏合或漏写。
  解答 原式=(-x2y+5x2y)+(-2xy2-4xy2)+(3-7)
  =4x2y-6xy2-4
  当然,在原式里的某个字母=任意一个数时:
  【例三】合并同类项并2y^2-5y+y^2+4y-3y^2-2,其中y=1/2
  原式=(2+1-3)y^2+(-5+4)y-2
  =0+(-y)-2
  当y=1/2时,原式=(-1/2)-2
  =-5/2

收起

所含字母相同,且相同字母的指数也相同的项叫做同类项.将多项式中的同类项合并为一项,叫做合并同类项。合并时,将系数相加,字母和字母指数不变。
xy²-5分之1xy²=(1-5分之1)xy=5分之4xy²;