9876×9876-9875×9877

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:41:35

9876×9876-9875×9877
9876×9876-9875×9877

9876×9876-9875×9877
9876×9876-9875×9877
=9876^2-(9876-1)(9876+1)
=9876^2-9876^2+1
=1

1
9876×9876-9875×9877
=9876^2-(9876-1)(9876+1)
=9876^2-9876^2+1
=1
任何一个数n
都有性质
n^2-(n+1)(n-1)=1

9876×9876-9875×9877=9876×9876-9875*(9876+1)
=9876×9876-9875*9876-9875
=9876*1-9875
=1
记住这个公式就OK了
n^2-(n+1)(n-1)=1

9876×9876-9875×9877
=9876^2-(9876-1)(9876+1)
=9876^2-9876^2+1
=1

9876×9876-9875×9877
=9876^2-(9876-1)(9876+1)
=9876^2-9876^2+1
=1
任何一个数n
都有性质
n^2-(n+1)(n-1)=1

(9875+1)*9876-9875*(9876+1)
=9875*9876+9876-9875*9876-9875
=1

=9876*9876-(9876-1)(9876+1)
=9876^2-9876^2+1^2
=1

9876×9876-9875×9877
=97535376-97535375
=1

1

9876×9876-9875×9877
=97535376-97535375
=1
9876×9876-9875×9877
=9876^2-(9876-1)(9876+1)
=9876^2-9876^2+1
=1
n^2-(n+1)(n-1)=1