x=2008,y=2006,求〔2x〔x^2y-xy^2〕+xy〔2xy-x^2〕〕÷x^2y的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:36:22

x=2008,y=2006,求〔2x〔x^2y-xy^2〕+xy〔2xy-x^2〕〕÷x^2y的值.
x=2008,y=2006,求〔2x〔x^2y-xy^2〕+xy〔2xy-x^2〕〕÷x^2y的值.

x=2008,y=2006,求〔2x〔x^2y-xy^2〕+xy〔2xy-x^2〕〕÷x^2y的值.
原式=(2x³y-2x²y²+2x²y²-x³y)÷x²y
=x³y÷x²y
=x
=2008

2008 呀

先简化代数式
〔2x〔x^2y-xy^2〕+xy〔2xy-x^2〕〕÷x^2y
=〔2x^2y〔x-y〕+x^2y〔2y-x〕〕÷x^2y
=2x-2y+2y-X
=X
=2008

〔2x〔x^2y-xy^2〕+xy〔2xy-x^2〕〕÷x^2y
=〔2xy(x^2 - xy) + xy(2xy - x^2)〕÷ x^2y
= xy[2x^2 - 2xy + 2xy - x^2]÷ x^2y
= x^2 ÷x
= x
=2008

〔2x〔x^2y-xy^2〕+xy〔2xy-x^2〕〕÷x^2y
=[2x^2y(x-y)+x^2y(2y-x)]÷x^2y=x(x-y)+2y-x=2(x-y)-(x-y)+y=x=2008