求函数f(x)=x^3-3x在[-3,3/2]上的最大值和最小值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:02:01

求函数f(x)=x^3-3x在[-3,3/2]上的最大值和最小值.
求函数f(x)=x^3-3x在[-3,3/2]上的最大值和最小值.

求函数f(x)=x^3-3x在[-3,3/2]上的最大值和最小值.
1.求导为y’=3x^2-3
2.令导数为0,得x=±1
3.列表,分-3,(-3,-1),-1,(-1,1),1,(1,3/2),3/2这几列,对x的取值分段
求出每个区间上的单调性,用来说明极值
4.函数在闭区间上的最值只在端点或极值点的地方取得,
故最后只要比较-3,-1,1,3/2几处的函数值,最大和最小都在里面了.

最大值f(-1)=2,最小值f(-3)=-18

求导 最大值f(-1)=2,最小值f(-3)=-18

求导 y’=3x^2-3
最大值f(-1)=2,最小值f(-3)=-18