在△ABC中,a、b、c分别是角A、B、C所对的边,且2sin^2[(A+B)/2]+cos2C=1(1)求∠C的大小(2)若a^2=b^2+1/2c^2,试求sin(A-B)的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 17:20:20
在△ABC中,a、b、c分别是角A、B、C所对的边,且2sin^2[(A+B)/2]+cos2C=1(1)求∠C的大小(2)若a^2=b^2+1/2c^2,试求sin(A-B)的值
在△ABC中,a、b、c分别是角A、B、C所对的边,且2sin^2[(A+B)/2]+cos2C=1
(1)求∠C的大小
(2)若a^2=b^2+1/2c^2,试求sin(A-B)的值
在△ABC中,a、b、c分别是角A、B、C所对的边,且2sin^2[(A+B)/2]+cos2C=1(1)求∠C的大小(2)若a^2=b^2+1/2c^2,试求sin(A-B)的值
第一问:2sin^2[(A+B)/2]+cos2C=1
2cos^2(C/2) +2cosC^2 -1 = 1
2cosC^2+cosC -1 = 0
cosC = 1/2 or cosC = -1 (不可能)
C = 60
第二问:若a^2=b^2+1/2c^2
sinA^2 = sinB^2+ 1/2 sinC^2
sinA^2=sinB^2+1/2 sinC^2
(sinA+sinB)(sinA-sinB) = 1/2 sinC^2
sin(A+B)sin(A-B) = 1/2sin(A+B)^2
sin(A-B) = 1/2sin(A+B) = √3/4
应该是这样
2sin^2[(A+B)/2]+cos2C=1
2cos^2(C/2) +2cosC^2 -1 = 1
2cosC^2+cosC -1 = 0
cosC = 1/2 or cosC = -1 (不可能)
C = 60
若a^2=b^2+1/2c^2
sinA^2 = sinB^2+ 1/2 sinC^2
sinA^2=sinB^2+1/2 ...
全部展开
2sin^2[(A+B)/2]+cos2C=1
2cos^2(C/2) +2cosC^2 -1 = 1
2cosC^2+cosC -1 = 0
cosC = 1/2 or cosC = -1 (不可能)
C = 60
若a^2=b^2+1/2c^2
sinA^2 = sinB^2+ 1/2 sinC^2
sinA^2=sinB^2+1/2 sinC^2
(sinA+sinB)(sinA-sinB) = 1/2 sinC^2
sin(A+B)sin(A-B) = 1/2sin(A+B)^2
sin(A-B) = 1/2sin(A+B) = √3/4
收起
d
(1)
∵2sin^2[(A+B)/2]+cos2C=1
∴cos2C=1-2sin^2[(A+B)/2]
又∵1-2sin^2[(A+B)/2]
=cos(A+B) (半角公式)
=-cosC
cos2C=2cos^2C-1 (二倍角公式)
∴2cos^2C-1=-cosC
(cosC+1)(2cosC-1...
全部展开
(1)
∵2sin^2[(A+B)/2]+cos2C=1
∴cos2C=1-2sin^2[(A+B)/2]
又∵1-2sin^2[(A+B)/2]
=cos(A+B) (半角公式)
=-cosC
cos2C=2cos^2C-1 (二倍角公式)
∴2cos^2C-1=-cosC
(cosC+1)(2cosC-1)=0
cosC=-1或1/2
又∵C为三角形内角
∴cosC=1/2
C=60°
收起