不等式难题 abc=1,a,b,c∈R正.证明a³+b³+c³+6≥(a+b+c)²做出了麻烦给道相似类型和难度的题有没有高一搞的懂的方法啊?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 14:35:26
不等式难题 abc=1,a,b,c∈R正.证明a³+b³+c³+6≥(a+b+c)²做出了麻烦给道相似类型和难度的题有没有高一搞的懂的方法啊?
不等式难题 abc=1,a,b,c∈R正.证明a³+b³+c³+6≥(a+b+c)²
做出了麻烦给道相似类型和难度的题
有没有高一搞的懂的方法啊?
不等式难题 abc=1,a,b,c∈R正.证明a³+b³+c³+6≥(a+b+c)²做出了麻烦给道相似类型和难度的题有没有高一搞的懂的方法啊?
证明:∵a·b·c=1,且a、b、c∈R+(正实数)
∴a³+b³+c³-3abc
=[(a+b+c)³-3a²b-3ab²-3b²c-3bc²-3c²a-3ca²-6abc]-3abc
=(a+b+c)³-3(a²b+ab²+b²c+bc²+c²a+ca²+3abc)
=(a+b+c)³-3(a+b+c)(ab+bc+ca)
=(a+b+c)[(a+b+c)²-3(ab+bc+ca)]
=(a+b+c)[(a²+b²+c²+2ab+2bc+2ca)-3(ab+bc+ca)]
=(a+b+c)(a²+b²+c²-ab-bc-ca)
=1/2 (a+b+c)[(a-b)²+(b-c)²+(c-a)²]≥0
则a³+b³+c³-3abc=a³+b³+c³-3≥0,即a³+b³+c³≥3;
∴a³+b³+c³+6≥9.
又∵(a+b+c)²≤3(a²+b²+c²),当且仅当a=b=c=1时取等号,即(a+b+c)²最大值为9;
∴a³+b³+c³+6≥(a+b+c)².
.
原问题转化为 求f(a,b,c)=(a+b+c)²-(a³+b³+c³)
在条件 abc=1 的最大值
拉格朗日函数 L(a,b,c,y)=(a+b+c)²-(a³+b³+c³)+y(abc-1)
解出其最大值点 a=b=c=1
...
全部展开
原问题转化为 求f(a,b,c)=(a+b+c)²-(a³+b³+c³)
在条件 abc=1 的最大值
拉格朗日函数 L(a,b,c,y)=(a+b+c)²-(a³+b³+c³)+y(abc-1)
解出其最大值点 a=b=c=1
f(a,b,c)=(a+b+c)²-(a³+b³+c³)的最大值=6
故f(a,b,c)=(a+b+c)²-(a³+b³+c³)<=6
即 a³+b³+c³+6≥(a+b+c)²
--------------------
啥意思?不对吗?
给你做一个:
a,b,c∈R正,证明27[(a+b+c)/5]^5≥abc³
收起
反复应用:平方平均值>=几何平均值
即:x+y >= 2*根号(xy)
技巧:列项
原式= a^3/bc+ b^3/ac+ c^3/ab
= (a^3/2bc+ b^3/2ac)+(a^3/2bc+ c^3/2ab)+(b^3/2ac+ c^3/2ab)
>= 2*根号(a^3/2bc * b^3/2ac)+ 2*根号(a^3/2bc * c^3/2ab)+...
全部展开
反复应用:平方平均值>=几何平均值
即:x+y >= 2*根号(xy)
技巧:列项
原式= a^3/bc+ b^3/ac+ c^3/ab
= (a^3/2bc+ b^3/2ac)+(a^3/2bc+ c^3/2ab)+(b^3/2ac+ c^3/2ab)
>= 2*根号(a^3/2bc * b^3/2ac)+ 2*根号(a^3/2bc * c^3/2ab)+ 2*根号(b^3/2ac * c^3/2ab)
= ab/c +ac/b+ bc/a
= (ab/2c +ac/2b)+(ab/2c +bc/2a)+(ac/2b+ bc/2a)
>= 2*根号(ab/2c * ac/2b)+ 2*根号(ab/2c * bc/2a)+ 2*根号(ac/2b * bc/2a)
= a+b+c
所以:a^3/bc+ b^3/ac+ c^3/ab >= a+b+c
取等条件:a=b=c
收起
睡两觉起来还是没人做