证明tan^2α-cot^2α/sin^2α-cos^2α=sec^2α+csc^2α

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 02:46:58

证明tan^2α-cot^2α/sin^2α-cos^2α=sec^2α+csc^2α
证明tan^2α-cot^2α/sin^2α-cos^2α=sec^2α+csc^2α

证明tan^2α-cot^2α/sin^2α-cos^2α=sec^2α+csc^2α
(tan²a-cot²a)/(sin²a-cos²a)
=(sin²a/cos²a-cos²a/sin²a)/(sin²a-cos²a)
=(sin^4a-cos^4a)/sin²acos²a(sin²a-cos²a)
=(sin²a-cos²a)(sin²a+cos²a)/sin²acos²a(sin²a-cos²a)
=(sin²a+cos²a)/sin²acos²a
=1/cos²a+1/sin²a
=sec²a+csc²a