数列{An}的通项An=n^2(cos^2(n π)/2-sin2(nπ/3)),其前n项和为Sn,求S30,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:31:18
数列{An}的通项An=n^2(cos^2(n π)/2-sin2(nπ/3)),其前n项和为Sn,求S30,
数列{An}的通项An=n^2(cos^2(n π)/2-sin2(nπ/3)),其前n项和为Sn,求S30,
数列{An}的通项An=n^2(cos^2(n π)/2-sin2(nπ/3)),其前n项和为Sn,求S30,
(cos(nπ/3))^2-(sin(nπ/3))^2=cos(2nπ/3)
n=1,cos(2π/3)=-1/2
n=2,cos(4π/3)=-1/2
n=3,cos(6π/3)=1
以后cos取值三个一组循环.
第二种解法:
三个一组分析,3n-2、3n-1、3n为一组
(3n)^2×(1)=(3n)^2×(1/2)+(3n)^2×(1/2)
分别与(3n-2)^2×(-1/2)和(3n-1)^2×(-1/2)相加
(3n)^2×(1/2)+(3n-2)^2×(-1/2)
=(1/2)×((3n)^2-(3n-2)^2)
=(1/2)×(3n+(3n-2))×(3n-(3n-2))
=(1/2)×(6n-2)×(2)
=6n-2
另一个同理
(3n)^2×(1/2)+(3n-1)^2×(-1/2)
=(1/2)×((3n)^2-(3n-1)^2)
=(1/2)×(3n+(3n-1))×(3n-(3n-1))
=(1/2)×(6n-1)×(1)
=3n-0.5
也可以直接展开
(3n-2)^2×(-1/2)+(3n-1)^2×(-1/2)+(3n)^2×(1)
=(1/2)×[(3n)^2-(3n-2)^2]+(1/2)×[(3n)^2-(3n-1)^2]
=(1/2)(3n+3n-2)(3n-3n+2)+(1/2)(3n+3n-1)(3n-3n+1)
=9n-2.5
Bn=9n-2.5
B1=A1+A2+A3 B2=A4+A5+A6 ……
S30共10组
S30=B1+B2+……+B10
用等差数列求和公式
B1=9×1-2.5=6.5 (九乘以一减二点五)
B10=9×10-2.5=87.5
S30=(B1+B10)×10/2=(6.5+87.5)×10/2=470
2009年高考江西数学理科选择题第8题,文科倒数第2题.
有周期性的,你看看