lim(x,y)->(∞,a)(1-1/x)^(x^2/x+y)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 21:33:49
lim(x,y)->(∞,a)(1-1/x)^(x^2/x+y)
lim(x,y)->(∞,a)(1-1/x)^(x^2/x+y)
lim(x,y)->(∞,a)(1-1/x)^(x^2/x+y)
(1-1/x)^(x^2/x+y)
=[(1-1/x)^x] ^(x/x+y)
显然在x趋于∞的时候,
(1-1/x)^x趋于1/e,
而x趋于∞,y趋于常数a,
则x/x+y 趋于1,
故
(x,y)趋于(∞,a)时,
(1-1/x)^(x^2/x+y)趋于(1/e)^1即1/e
lim(x,y)->(∞,a)(1-1/x)^(x^2/x+y)
⒈lim(x→a):(sinx-sina)/(x-a) a为常数⒉lim(x→∞):(1+k/x)^(-x) k为常数⒊lim(y→0):(1-5y)^(1/y)
lim(x,y)趋向于(无穷,a) (1+1/x)^(x^2/(x+y))answer:e
lim(1+a/x)bx
x→+∞,lim(1+a/x)^x=?
lim(x→+∞,y→0) (1+1/x)^(x^2/(x+y))
lim(0-∞)/(x+1)
求极限(1). lim(x-o) ln(sinx/x) (2). lim(n->∞){x[ln(x+a)-lnx]}
1.已知y=xlnx,则y³=( )A.-1/X B.1/X² C.-1/X² D.1/X2.下列极限中能使用罗比达法则的有( )A.lim(x²sin1/X)/sinX B.lim X*(π/2-arctanX) X→0 X→+∞C.lim(X-sinX)/(X+sinX) D.lim (e∧x=e∧-x)/
高数一2.6求下列极限1) lim(x趋于∞)(1+k/x)^x (k≠0,整数)令y=k/x,则x=k/y ,x趋于∞等价于y趋于0,故lim(x趋于∞)(1+k/x)^x=lim(y趋于0)(1+y)^k/y=lim(y趋于0)[(1+y)^(1/y)]^k=[lim(y趋于0)[(1+y)^(1/y)]=e^k我
lim(x,y)→(0,0) (1+xcosy)^(1/x)
lim(x,y)->(0,2)(1-3xy)^2/x
定积分:(1) lim(x→a) 1/(x-a) ∫[a,x] f(t)dt(2) lim(x→∞) ∫[x,x+1] (sint)/t dt
lim(1+xy)^(1/x+1/y) x趋向于0 y趋向于a
(lim) x/(x-y)
两条极限,求详细过程lim(x→∞)e^(2x^2-3/x^2+1)lim(x→a)sinx-sina/x-a
lim(x→0)(a^2x-1)/4x
lim(sinx/sina)^ 1/x-a ( x→a)