求由平面y=0,y=Kx(K>0),z=0以及球心在原点,半径为R的上半球面所围成的在第一卦限内的立体的体积.大学大学高数,要详细答案
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:46:04
求由平面y=0,y=Kx(K>0),z=0以及球心在原点,半径为R的上半球面所围成的在第一卦限内的立体的体积.大学大学高数,要详细答案
求由平面y=0,y=Kx(K>0),z=0以及球心在原点,半径为R的上半球面所围成的在第一卦限内的立体的体积.大学
大学高数,要详细答案
求由平面y=0,y=Kx(K>0),z=0以及球心在原点,半径为R的上半球面所围成的在第一卦限内的立体的体积.大学大学高数,要详细答案
它是由XOY平面、XOZ平面、垂直于XOY平面的平面y=kx和在第一卦限的球面z=√(R^2-x^2-y^2)所围成的立体图形,
在XOY平面的投影是一个扇形,转变成极坐标为:θ=0.θ=arctank,r=R,
V=∫[0,arctank] dθ∫[0,R] √(R^2-r^2)rdr
=-(1/2)∫[0,arctank] dθ∫[0,R]√(R^2-r^2)d(R^2-r^2)
=-(1/2)∫[0,arctank] dθ(R^2-r^2)^(3/2)/(3/2) [0,R]
=(-1/3)∫[0,arctank](-R^3)dθ
=(R^3/3)θ[0,arctank)
=(arctank )R^3/3.
....
平面kx+y+z-k=0与kx+y-2z=0垂直,求k
求由平面y=0,y=Kx(K>0),z=0以及球心在原点,半径为R的上半球面所围成的在第一卦限内的立体的体积.要详细过程
平面kx+y-2z-8=0在x轴上的截距为-2,则k=
求由平面y=0,y=Kx(K>0),z=0以及球心在原点,半径为R的上半球面所围成的在第一卦限内的立体的体积.大学大学高数,要详细答案
问道高二不等式题已知平面区域如图所示,z=kx+y(k>0)在平面区域内取得最大值的最优解有无数多个,则k的值是多少?
解一题也行已知方程组{5x-3y+6z=4,3x-y+2z=0,3x+z=-1的解满足方程kx的平方-2(k-1)xy+z的平方=-7,求k的值.{x+y-2z=-3,2x+6y+z=2,x+y+z=0
03.设齐次方程组 有非零解,求k的值.kx+0y+z=003.设齐次方程组{2x+ky+z=0 有非零解,求k的值. kx-2y+z=0
y=kx+b(k不等于0)是,k
y=kx+b(k不等于0)是,k
求平面y=o,y=kx(k>0),z=0,以及球心在原点,半径为R的上半球面所围成的第一卦限内立体的体积
平面区域D1 由曲线y=x2 ,直线y=kx ,(0
求由平面x-3y+2z-5=0与3x-2y-z+3所成二面角的平面方程?
直线y=kx+b(k≠0)可由直线y=kx(k≠0)平移___个单位长度得到
已知8cos(2x+y)+5cosy=0,且x不等于kx+pi/2,x+y不等于kx+pi/2(k属于Z),求tan(x+y)tanx的值?
x+y-3≤3 z=kx-y的最大值=6x-2y-3≤0 最小值=0x≥1 求k=?
y=kx的图像(k>0)
在同一平面直角坐标系中,函数y=kx+k与y=k/x(k≠0)的图像大致是?
己知3元齐次线性方程组3x+2y-z=0 kx+7y-2z=0 2x-y+3z=0有非零解k