数列求和 an=(2n+1)/[2*3^(n-1)]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:56:30

数列求和 an=(2n+1)/[2*3^(n-1)]
数列求和 an=(2n+1)/[2*3^(n-1)]

数列求和 an=(2n+1)/[2*3^(n-1)]
分析:错位相减
设前n项和为Sn,则Sn=3/[2*3^0]+5/[2*3^1]+...+(2n+1)/[2*3^(n-1)]
∴Sn/3=3/[2*3^1]+5/[2*3^2]+...+(2n+1)/[2*3^n]
∴Sn-Sn/3=3/[2*3^0]+2/[2*3^1]+...+2/[2*3^(n-1)]-(2n+1)/[2*3^n]
=2/3-(2n+1)/[2*3^n]+[1/(3^1)+1/(3^2)+...+1/(3^(n-1))]
=2/3-(2n+1)/[2*3^n]+1/3[1-(1/3)^(n-1)]/[1-1/3]
∴可以解得:Sn=3-(n+2)/[2*3^(n-1)]

454

an=(2n+1)/[2*3^(n-1)]
= n *(1/3)^(n-1) + (1/2) (1/3)^(n-1)
summation {an}
=[ summation{n *(1/3)^(n-1)} ] + (3/4) ( 1-(1/3)^n)
consider
1+x+x^2+..+x^n= (x^(n+1) -1)/(x-1)

全部展开

an=(2n+1)/[2*3^(n-1)]
= n *(1/3)^(n-1) + (1/2) (1/3)^(n-1)
summation {an}
=[ summation{n *(1/3)^(n-1)} ] + (3/4) ( 1-(1/3)^n)
consider
1+x+x^2+..+x^n= (x^(n+1) -1)/(x-1)
1+2x+3x^2+..+n.x^(n-1) = [(x^(n+1) -1)/(x-1)]'
= [nx^(n+1) -(n+1)x^n +1]/(x-1)^2
put x= 1/3
summation{n *(1/3)^(n-1)} =(9/4) [n (1/3)^(n+1) -(n+1)(1/3)^n +1]

summation an
= (9/4) [n (1/3)^(n+1) -(n+1)(1/3)^n +1] + (3/4) ( 1-(1/3)^n)

收起

Sn=3/2+5/6+7/18+9/54+…+(2n+1)/[2*3^(n-1)]
(1/3)Sn=3/6+5/18+7/54+…+(2n-1)/[2*3^(n-1)]+(2n+1)/[2*3^n]
上面的减下面的,得到(2/3)Sn=3/2+1/3+1/9+1/27+…+1/[2*3^(n-1)]-(2n+1)/[2*3^n]
然后除去首尾的那两个的话,剩下的是个等比数列...

全部展开

Sn=3/2+5/6+7/18+9/54+…+(2n+1)/[2*3^(n-1)]
(1/3)Sn=3/6+5/18+7/54+…+(2n-1)/[2*3^(n-1)]+(2n+1)/[2*3^n]
上面的减下面的,得到(2/3)Sn=3/2+1/3+1/9+1/27+…+1/[2*3^(n-1)]-(2n+1)/[2*3^n]
然后除去首尾的那两个的话,剩下的是个等比数列,应该会求吧,求出后再加上首尾两个数就行了

收起