设y=f(e^x)/e^f(x),且f(x)可导,求y的导数.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:35:25

设y=f(e^x)/e^f(x),且f(x)可导,求y的导数.
设y=f(e^x)/e^f(x),且f(x)可导,求y的导数.

设y=f(e^x)/e^f(x),且f(x)可导,求y的导数.
y'={[f(e^x)]'·[e^f(x)]-[e^f(x)]'·[f(e^x)]}/{[e^f(x)]^2}
其中[f(e^x)]'=f’(e^x)·(e^x)'=e^x·f'(e^x)
[e^f(x)]'=[e^f(x)]·[f(x)]'=[e^f(x)]·[f'(x)]
剩下的就是化简合并了,不写了,太不好打了