若n阶方阵A^3=0,怎么证明A-E和A+E都可逆?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:55:48

若n阶方阵A^3=0,怎么证明A-E和A+E都可逆?
若n阶方阵A^3=0,怎么证明A-E和A+E都可逆?

若n阶方阵A^3=0,怎么证明A-E和A+E都可逆?
E+A^3=(E+A)(E-A+A^2)=E
E-A^3=(E-A)(E+A+A^2)=E