圆锥曲线 若直线y=x-b与抛物线y2=2px (p>0)相交于不同两点A(x1,y1),B(x2,y2),o为坐标原点,给出下列4个命题:①若b=2p,则∠AOB=90° ②若b=p,则∠AOB为锐角 ③若b=p/2,则y1 y2=-p^2 ④若b=p/2,则x1 x2=-p^2,其

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:43:48

圆锥曲线 若直线y=x-b与抛物线y2=2px (p>0)相交于不同两点A(x1,y1),B(x2,y2),o为坐标原点,给出下列4个命题:①若b=2p,则∠AOB=90° ②若b=p,则∠AOB为锐角 ③若b=p/2,则y1 y2=-p^2 ④若b=p/2,则x1 x2=-p^2,其
圆锥曲线
若直线y=x-b与抛物线y2=2px (p>0)相交于不同两点A(x1,y1),B(x2,y2),o为坐标原点,给出下列4个命题:①若b=2p,则∠AOB=90° ②若b=p,则∠AOB为锐角 ③若b=p/2,则y1 y2=-p^2 ④若b=p/2,则x1 x2=-p^2,其中真命题是_____________

圆锥曲线 若直线y=x-b与抛物线y2=2px (p>0)相交于不同两点A(x1,y1),B(x2,y2),o为坐标原点,给出下列4个命题:①若b=2p,则∠AOB=90° ②若b=p,则∠AOB为锐角 ③若b=p/2,则y1 y2=-p^2 ④若b=p/2,则x1 x2=-p^2,其
①③正确
①若b=2p,y=x-2p,x=y+2p与y²=2px 联立得:y²-2py-4p²=0(#)
y₁y₂=-4p²,x₁x₂=(y₁y₂)²/(4p²)=4p²
向量OA·向量OB=x₁x₂+y₁y₂=0,则∠AOB=90°
∴①正确
②b=p ,(#)y²-2py-2p²=0(#)
那么 将y₁y₂=-2p²,x₁x₂=(y₁y₂)²/(4p²)=p²
向量OA·向量OB=x₁x₂+y₁y₂=-p²90°
②错误
③b=p/2,(#)为y²-2py-p²=0
y₁y₂=-p²,③ 正确
④在③ x₁x₂=(y₁y₂)²/(4p²)=p²/4
④错误

设直线AP方程为y=k(x+1),与抛物线方程y=x 2;-1联立得 y=k(x+1)=x 2;-1=(x-1)(x+1),约去(x+1) 得点P横坐标Xp=1+k 代入y=x 2;

联立直线、抛物线,得:
x²-(2b+2p)x+b²=0
向量OA·向量OB
=x1x2+y1y2
=x1x2+(x1-b)(x2-b)
=2x1x2-b(x1+x2)+b²
①b=2p
x1x2=b², x1+x2=2b+2p=3b
向量OA·向量OB = 2b²-3b²...

全部展开

联立直线、抛物线,得:
x²-(2b+2p)x+b²=0
向量OA·向量OB
=x1x2+y1y2
=x1x2+(x1-b)(x2-b)
=2x1x2-b(x1+x2)+b²
①b=2p
x1x2=b², x1+x2=2b+2p=3b
向量OA·向量OB = 2b²-3b²+b²=0
∴OA⊥OB,即∠AOB=90°
①对
②b=p≠0
x1x2=b², x1+x2=2b+2p=4b
向量OA·向量OB = 2b²-4b²+b²= -b²
cos∠AOB = (向量OA·向量OB) / (|OA|·|OB|) = -b²/(|OA|·|OB|) <0
∴90°<∠AOB <180°
即∠AOB是钝角
②错
③b=p/2,p=2b
x1x2=b², x1+x2=2b+2p=6b
y1y2=(x1-b)(x2-b)
=x1x2-b(x1+x2)+b²
=b²-6b²+b²
=-4b²= -(2b)² = -p²
③对
④x1x2=b²
④错
∴真命题为①③

收起

圆锥曲线与直线的交点问题到直线y=x+3的距离最短的抛物线y2=4x上的点的坐标是 过抛物线x^2=4y的焦点作直线交抛物线与A(x1,y1)B(x2,y2),若y1+y2=6则/AB/= 高二数学圆锥曲线抛物线与直线位置关系题目过点P(-1,-2)作斜率为π/4的直线交抛物线y^2=2ax于A,B两点,若线段PA,AB,PB成等比数列,求抛物线方程.看我的解答:A(x1,y1)B(x2,y2)联立y2=2axy+2=x+1得到 圆锥曲线 若直线y=x-b与抛物线y2=2px (p>0)相交于不同两点A(x1,y1),B(x2,y2),o为坐标原点,给出下列4个命题:①若b=2p,则∠AOB=90° ②若b=p,则∠AOB为锐角 ③若b=p/2,则y1 y2=-p^2 ④若b=p/2,则x1 x2=-p^2,其 高考圆锥曲线中抛物线结论问题就是有一些列圆锥曲线中抛物线方程过焦点直线与抛物线交A,B两点,焦点为F,A(x1,y1)B(x2,y2),y²=2px(p>0),直线AB的倾斜角为α,则有y1y2=-p²,x1x2=p²/4,AB=2p/si 如图,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是 圆锥曲线——抛物线直线l与抛物线y²=x交于A(x1,y1),B(x2,y2)两点,与x轴相交于点M,且y1y2=-11)求证:M点的坐标为(1,0)2)求证OA⊥OB3)求三角形AOB面积的最小值 圆锥曲线的题目(急)已知正方形ABCD的顶点A,B在抛物线y2=x上 C,D在直线y=x+4上,求证正方形的边长. 圆锥曲线题目已知过抛物线y²=4x焦点F的直线与抛物线交A、B两点,过原点O的直线AO交抛物线准线于C点(2)求[AB]+[BC]的最小值 在数学直线与圆锥曲线相交y1乘y2= 一道圆锥曲线题目直线y=x+b与曲线x=根号(1-y2)有且仅有一个公共点,则b的取值范围是( )A.b=±根号2 B.-1 已知直线y=k[x+2][k>0]与抛物线C:y2=8x相交于A,B两点,F为抛物线C的焦点,若|FA|=2|FB|,求直线方程 过抛物线y=2x^2的焦点的直线与抛物线于A(x1,y1),B(x2,y2)则x1x2等于 高中圆锥曲线.已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,直线PA和PB的斜率分别为k1,k2, 请教关于圆锥曲线的题目已知抛物线y2=4x,直线L交抛物线于A(x1,y1),B(x2,y2)两不同点,若L‘是过点M(2,3/2)且垂直于x轴的一条直线是否存在L,使得AB被L'平分,若存在,求出L的斜率的;若不存在,请说 已知抛物线y=2px(p>0)与直线y=x-1相交于A,B两点,若A,B的中心在圆x2+y2=5上,求抛物线方程 抛物线+直线过抛物线y^2=4x的焦点作直线,交抛物线于点A(x1,y1)B(x2,y2),若y1+y2=2乘根号2,则|AB|=? 求直线与抛物线 直线方程已知抛物线C:y2=4x焦点为F,直线L经过点F且与抛物线C相交于A,B两点(1)若线段AB的中点在直线y=2上,求直线L的方程(2)若线段▏AB▏=20,求直线L方程