求解不定积分:∫(x^5)/(Cx+D)dx,C,D 为常数.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:07:26

求解不定积分:∫(x^5)/(Cx+D)dx,C,D 为常数.
求解不定积分:∫(x^5)/(Cx+D)dx,C,D 为常数.

求解不定积分:∫(x^5)/(Cx+D)dx,C,D 为常数.
求解不定积分:∫(x⁵)/(Cx+D)dx,C,D 为常数.
当c≠0时:
∫{[x⁵/(cx+d)]dx=∫[(1/c)x⁴-(d/c²)x³+(d²/c³)x²-(d³/c⁴)x+(d⁴/c⁵)]-d⁵/[c⁴(cx+d)]}dx
=(1/5c)x⁵-(d/4c²)x⁴+(d²/3c³)x³-(d³/2c⁴)x²+(d⁴/c⁵)x-(d⁵/c⁵)ln∣cx+d∣+C
当c=0时∫(x⁵/d)dx=x⁶/(6d)+C.

如果C=0,∫(x^5)/(Cx+D)dx=x^6/6D+A,下设C不为0
∫(x^5)/(Cx+D)dx
=(1/C)∫(x^5+(D/C)^5-(D/C)^5)/(x+D/C)dx
=(1/C)∫(x^4-x^3(D/C)+x^2(D/C)^2-x(D/C)^3+(D/C)^4)dx-∫(D/C)^5)/(x+D/C)dx
=(1/C)(x^5/5-x^4/4(D/C)+x^3/3(D/C)^2-x^2/2(D/C)^3+x(D/C)^4)-(D/C)^5)ln|x+D/C|+A

这个要多项式除法,那个C、D太复杂了。系数太大