求歌德巴赫猜想证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:55:29

求歌德巴赫猜想证明
求歌德巴赫猜想证明

求歌德巴赫猜想证明
直接证明哥德巴赫猜想不行,人们采取了迂回战术,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积.如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立.从20世纪20年代起,外国和中国的一些数学家先后证明了"9+9""2十3""1+5""l+4"等命题.
1966年,我国年轻的数学家陈景润,在经过多年潜心研究之后,成功地证明了"1+2",也就是"任何一个大偶数都可以表示成一个素数与另一个素因子不超过2个的数之和".这是迄今为止,这一研究领域最佳的成果,距摘取这颗"数学王冠上的明珠"仅一步之遥,在世界数学界引起了轰动."1+2" 也被誉为陈氏定理.
哥德巴赫的问题可以推论出以下两个命题,只要证明以下两个命题,即证明了猜想:
(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和.
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和.
这道著名的数学难题引起了世界上成千上万数学家的注意.200年过去了,没有人证明它.到了20世纪20年代,才有人开始向它靠近.1920年,挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比6大的偶数都可以表示为(9+9).这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫猜想”.
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理(Chen's Theorem) .“任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式.