∫1/﹙sinx+cosx﹚^2dx=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:53:34
∫1/﹙sinx+cosx﹚^2dx=?
∫1/﹙sinx+cosx﹚^2dx=?
∫1/﹙sinx+cosx﹚^2dx=?
方法一:
∫[1/(sinx+cosx)^2]dx
=(1/2)∫{1/[(1/√2)sinx+(1/√2)cosx]^2}dx
=(1/2)∫{1/[sinxcos(π/4)+cosxsin(π/4)]^2}dx
=(1/2)∫{1/[sin(x+π/4)]^2}d(x+π/4)
=-(1/2)cot(x+π/4)+C
方法二:
∵1
=(1/2){[(cosx)^2+2sinxcosx+(sinx)^2]+[(cosx)^2-2sinxcosx+(sinx)^2]}
=(1/2)[(cosx+sinx)^2+(cosx-sinx)^2]
=(1/2)[(sinx-cosx)′(cosx+sinx)+(cosx-sinx)(sinx+cosx)′]
=(1/2)[(sinx-cosx)′(cosx+sinx)-(sinx-cosx)(sinx+cosx)′],
∴1/(sinx+cosx)^2
=(1/2)[(sinx-cosx)′(cosx+sinx)-(sinx-cosx)(sinx+cosx)′]/(sinx+cosx)^2
=(1/2)[(sinx-cosx)/(sinx+cosx)]′.
∴∫[1/(sinx+cosx)^2]dx
=(1/2)∫[(sinx-cosx)/(sinx+cosx)]′dx=(sinx-cosx)/[2(sinx+cosx)]+C
∫1/﹙sinx+cosx﹚^2dx=?
∫cosx/sinx(1+sinx)^2dx
∫cosx/【2+(sinx)^2】dx=?
∫1/sinx^2cosx^2 dx
∫(1+cosx)/(x+sinx)dx=?
∫(sinx+cosx)^2 dx ∫(sinx+cosx)^2 dx
a=∫派0(sinx-1+cosx/2)dx
∫cosx/ sinx dx=?
∫/(1+sinx+cosx)dx
∫(cosx/1+sinx)dx
sinx/(1+cosx)^2dx
cosx(sinx)2dx∫cosx(sinx)²d=?∫cosx(sinx)2dx和∫cosx(sinx)²dx
∫sinx(cosx+1)/(1+cosx^2)dx
为什么∫sinx/(cosx)^2dx等于1/cosx 啊
∫(cosx)^2/(cosx-sinx)dx
∫(1+sinx)/(1+cosx+sinx)dx
∫[ (sinx * cosx)/(1+(sinx)^4)]/dx
求(sinx)三次方的不定积分∫ (sinx)^3 dx = ∫ (sinx)^2 sinx dx = ∫ (1-(cosx)^2) (-1) d(cosx)= - cosx +1/3 (cosx)^3 + C第一步没看懂,自变量怎么变成cosx了?