若f(x)=(x-1)(x-2)…(x-9)(x-10)则f'(10)=对于此题,有9!和0两种答案.能否给我一个清楚的过程,让我明白到底哪种对.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:41:29
若f(x)=(x-1)(x-2)…(x-9)(x-10)则f'(10)=对于此题,有9!和0两种答案.能否给我一个清楚的过程,让我明白到底哪种对.
若f(x)=(x-1)(x-2)…(x-9)(x-10)则f'(10)=
对于此题,有9!和0两种答案.能否给我一个清楚的过程,让我明白到底哪种对.
若f(x)=(x-1)(x-2)…(x-9)(x-10)则f'(10)=对于此题,有9!和0两种答案.能否给我一个清楚的过程,让我明白到底哪种对.
解法一:
f(x)=(x-1)(x-2)……(x-10),
ln[f(x)]=ln[(x-1)(x-2)……(x-10)]
ln[f(x)]=ln(x-1)+ln(x-2)+……+ln(x-10)
{ln[f(x)]}'=1/(x-1)+1/(x-2)+……+1/(x-10)
f'(x)/f(x)=1/(x-1)+1/(x-2)+……+1/(x-10)
f'(x)=[1/(x-1)+1/(x-2)+……+1/(x-10)]f(x)
把x=10代入,就求出f'(10)了.
解法二:
设y=(x-1)(x-2)……(x-9)
则:f(x)=y(x-10),
f'(x)=(x-10)y'+y(x-10)'=(10-x)y'+y
则:f'(x)|10=(10-10)y'+y=9!
即:f'(10)=9!
f(x)=(x-1)(x-2)…(x-9)(x-10)
设g(x)=(x-1)(x-2)………(x-9)
f(x)=g(x)(x-10)
f'(x)=g'(x)(x-10)+g(x)
f'(10)=0+g(10)
所以
f'(10)=(10-1)(10-2)…………(10-9)
=9!
若f(x)满足f(x)-2f(1/x)=x,则f(x)=?
若F(x)满足f(x)+2f(1/x)=x,则f(x)=
f(x)=x(x-1)(x-2)…(x-99)(x-100),求f'(100)
若函数f(x)满足f(x)+2f(1/x)=5x+4/x,则f(x)=
f(x)={2x+1,x
f(x)={1+x/2,x
f(x)=(x-1)/(x+2)
对函数f(x),若f(x)=x,称x为f(x)不动点;若f(f(x))=x,称为的稳定点.A={x|f(x)=x},B={x|f(f(x))=x}……对函数f(x),若f(x)=x,称x为f(x)不动点;若f(f(x))=x,称为的稳定点.A={x|f(x)=x},B={x|f(f(x))=x}1、求证:A是B的子集2、若f(
若一次函数f(x) 满足f[f(x)]=1+2x 求f(x)
设f(x)=x(x-1)(x-2)……(x-100)求,f'(1)
f(x)=x(x-1)(x+2)(x-3)(x+4)……(x+100),求f'(1)
f(x)=x(x-1)(x-2)…(x-99),怎么求f'(0)=?
若F(X-1/X)=X^2+1/X^2,求F(X-1)
已知f(x)=(x-1)(x-2)(x-3)…(x-2008),求f’(1).
若f(x)=(x-1)(x-2)...(x-2010)(x-2011),则f'(1)=
若f(1/x)=x+根号1+x^2 (x>0),则f(X)=
f(x)=x(x-1)(x-2)…(x-100),求f'(100).
若f(2x+1)=x*x+x,则f(x)