设o为平面直角坐标系的原点,已知定点a(3,0),动点b在曲线x^2+y^2=1上运动,角aob的平分线交ab于点m,求m的轨迹方程参考答案为(4x-3)^2+16y^2=9,求过程。

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:40:31

设o为平面直角坐标系的原点,已知定点a(3,0),动点b在曲线x^2+y^2=1上运动,角aob的平分线交ab于点m,求m的轨迹方程参考答案为(4x-3)^2+16y^2=9,求过程。
设o为平面直角坐标系的原点,已知定点a(3,0),动点b在曲线x^2+y^2=1上运动,角aob的平分线交ab于点m,求m的轨迹方程
参考答案为(4x-3)^2+16y^2=9,求过程。

设o为平面直角坐标系的原点,已知定点a(3,0),动点b在曲线x^2+y^2=1上运动,角aob的平分线交ab于点m,求m的轨迹方程参考答案为(4x-3)^2+16y^2=9,求过程。
设B(m,n),m^2+n^2=1
因为OM为∠AOB平分线,所以OA/OB=AM/BM
因为OB=1,OA=3,所以M坐标为:(m+(3-m)/4,3n/4)
不妨设M(x,y),则x=3/4+3m/4,y=3n/4
m=(4x-3)/3 ,n=4y/3
把m,n带入m^2+n^2=1
得到答案

设O为平面直角坐标系的原点,一直定点A(3,0),动点B在曲线x²+y²=1上运动,∠AOB的平分线交AB于点M,求动点M的轨迹方程. 平面直角坐标系中,O为坐标原点,已知两定点A(1,0),B(0,-1),动点P(x,y)满足向量OP=m向量OA+(m-1)*向量OB,求点P的轨迹方程 平面直角坐标系中,O为原点,已知两定点A(1,0),B(0,-1),动点P(x,y)满足:OP=mOA+(m-1)OB,求点P的轨迹方程 在平面直角坐标系中,已知A(-3,4),B(-1,2),O为原点,求三角形AOB的面积. 在平面直角坐标系中,已知A(-3,4),B(2,0),O为原点.求三角形AOB的面积 设o为平面直角坐标系的原点,已知定点a(3,0),动点b在曲线x^2+y^2=1上运动,角aob的平分线交ab于点m,求m的轨迹方程参考答案为(4x-3)^2+16y^2=9,求过程。 空间直角坐标系中,O为坐标原点,A,B为两个定点,若动点C满足向量OC=aOA+bOB.其中a+b=1,则C的轨迹为A.平面 B.直线 C.圆 D.线段 已知平面直角坐标系中,点O为原点,A(-3,-4),B(5,-12),求OA*OB?.... 已知平面直角坐标系内,o为坐标原点,三角形abc的三个顶点分别为a(0,8),b(7,1),c(-2,1). 已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C、D的坐标分别为(9,0) 已知:如图,在直角梯形COAB中,OC‖AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别是已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别是A(8,0),B(8,1 平面直角坐标系中,O为坐标原点,已知两定点A(1,0),B(0,-1),动点P(x,y)满足→OP=m→OA+(m-1)→OB(m∈R)【→是在字母头上的】 (1)求点P轨迹方程 (2)设P点的轨迹与双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)交于相 向轨迹方程(过程)平面直角坐标系中,O为坐标原点,已知两定点A(1,0),B(0,-1),动点P(x,y)满足→OP=m→OA+(m-1)→OB(m∈R)【→是在字母头上的】(1)求点P轨迹方程(2)设P点的轨迹与双曲线C:x^2/a^2-y^ 如图6-8,在平面直角坐标系中,已知A(-3,4),B(-1,-2),O为坐标原点,求三角形AOB的面积. 在平面直角坐标系中,已知两点A(-3,4),B(-1,-2),O为坐标原点,如图所示,求三角形ABC的面积 在平面直角坐标系中,已知两点A(-3,4),B(-1,-2),O为原点,求三角形AOB的面积 如图,在平面直角坐标系中,已知两点A(-3,4),B(-1,2),O为原点,求三角形AOB的面积 在平面直角坐标系中,已知A(-3,4),B(-1,2),O为原点,求△AOB的面积