x*2-3x+2/sin(x-1)在x=1处的极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:48:22

x*2-3x+2/sin(x-1)在x=1处的极限
x*2-3x+2/sin(x-1)在x=1处的极限

x*2-3x+2/sin(x-1)在x=1处的极限
解法一:原式=lim(x->1)[(x-1)(x-2)/sin(x-1)] (把分式分子分解因式)
=lim(x->1){[(x-1)/sin(x-1)]*(x-2)}
=lim(x->1)[(x-1)/sin(x-1)]*lim(x->1)(x-2)
=1*(-1) ()应用重要极限lim(x->0)(sinx/x)=1)
=-1
解法二:原式=lim(x->1)[(2x-3)/cos(x-1)] (0/0型极限,应用罗比达法则)
=(2*1-3)/cos(1-1)
=-1/1
=-1

原式=(x-1)(x-2)/sin(x-1)=(x-2)/[sin(x-1)/(x-1)]
x趋于1,x-1趋于0
所以sin(x-1)/(x-1)极限=1
x-2极限是-1
所以原来极限=-1/1=-1