已知α∈(0,π/2),且sinα+2cosα=11/5,则tanα

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:32:57

已知α∈(0,π/2),且sinα+2cosα=11/5,则tanα
已知α∈(0,π/2),且sinα+2cosα=11/5,则tanα

已知α∈(0,π/2),且sinα+2cosα=11/5,则tanα
解析:
已知:sinα+2cosα=11/5,那么:
sinα=11/5 -2cosα
又sin²α+cos²α=1,所以:
(11/5 -2cosα)²+cos²α=1
121/25 -(44cosα)/5 +5cos²α=1
5cos²α - (44cosα)/5 +96/25=0
因式分解得:(5cosα - 4)(cosα - 24/25)=0
解得cosα=4/5或cosα =24/25
所以当cosα=4/5时,那么:sinα=11/5 -2cosα=3/5,此时tanα=sinα/cosα=(3/5)÷(4/5)=3/4;
当cosα=24/25时,那么:sinα=11/5 -2cosα=7/25,此时tanα=sinα/cosα=(7/25)÷(24/25)=7/24.