关于特征值的一个问题如果:A是三阶矩阵,A的特征值分别是 -2 ;1;0则A-3E的特征值分别是:-5;-2;-3A+3E的特征值分别是:1;4;3也就是直接加减那个E所对应的特征值 1 这个是根据什么定理

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:36:41

关于特征值的一个问题如果:A是三阶矩阵,A的特征值分别是 -2 ;1;0则A-3E的特征值分别是:-5;-2;-3A+3E的特征值分别是:1;4;3也就是直接加减那个E所对应的特征值 1 这个是根据什么定理
关于特征值的一个问题
如果:
A是三阶矩阵,A的特征值分别是 -2 ;1;0
则A-3E的特征值分别是:-5;-2;-3
A+3E的特征值分别是:1;4;3
也就是直接加减那个E所对应的特征值 1
这个是根据什么定理啊还是什么证明的?

关于特征值的一个问题如果:A是三阶矩阵,A的特征值分别是 -2 ;1;0则A-3E的特征值分别是:-5;-2;-3A+3E的特征值分别是:1;4;3也就是直接加减那个E所对应的特征值 1 这个是根据什么定理
设A的特征值为λ
那么Ax=λx
(A-3E)x=Ax-3Ex=Ax-3x=λx-3x=(λ-3)x
那么A-3E的特征值就是λ-3
其实对于A的矩阵多项式
f(A)=a0A^m+a1A^(m-1)+a2m^(m-2)+…+amE
它的特征值就是f(λ)
因为
f(A)x
=(a0A^m+a1A^(m-1)+a2A^(m-2)+…+amE)x
=a0A^mx+a1A^(m-1)x+a2A^(m-2)x+…amEx
=a0λ^mx+a1λ^(m-1)x+a2λ^(m-2)x+…+amx
=(a0λ^m+a1λ^(m-1)+a2λ^(m-2)x+…+am)x
=f(λ)x

Ax=λx
(A-λE)x=0
对于A-kE
(A-kE)x=λx
[A-(k+λ)E]=0
特征值为λ+k

这是个定理
请看图片里的详细叙述和证明:




定理中的(1)就是你提问的部分.
不明之处请追问.

收起

你这里E也是三阶单位矩阵,单位所对应的特征值为1,斜对角线上每个值都是1,其余为零
你可以看看线性代数的书 上面有讲解
也可以看看这个网站
http://www.tongji.edu.cn/~math/xxds/kcja/kcja_a/01.htm

关于矩阵特征值的问题 关于特征值的一个问题如果:A是三阶矩阵,A的特征值分别是 -2 ;1;0则A-3E的特征值分别是:-5;-2;-3A+3E的特征值分别是:1;4;3也就是直接加减那个E所对应的特征值 1 这个是根据什么定理 线性代数矩阵的特征值的问题:如果矩阵A=B+C那么A的特征值是B的特征值加上C的特征值吗? 一个关于特征值的问题已知一个矩阵A的特征值,怎么求A^3-2A^2+3E的特征值,我想要一般性的结论,λ^3-λ^2+3为所求的特征值是什么得出来的? 关于矩阵特征值、特征向量的一个选择题, 关于特征值的一个问题若v=2是可逆方阵A的一个特征值,则方阵(1/2AA)的逆矩阵必有一个特征值是---? 请问刘老师:关于相同特征值对应的特征向量一定线性相关性的问题一个矩阵如果与其对角矩阵相似,且该矩阵有n重特征值,那么对应这n重特征值一定有n个线性无关特征向量吗?如果矩阵不与 关于线性代数两矩阵合同的问题:为什么矩阵A与B等价后,A与B就有相同的特征值呢?不是一个若两个矩关于线性代数两矩阵合同的问题: 为什么矩阵A与B等价后,A与B就有相同的特征值呢?不是一个 设2为矩阵A的一个特征值,则矩阵3A必有一个特征值? 关于矩阵特征值的问题如果说一个矩阵A 的2个特征值是4,12 那么26A的特征值是把原来的特征值乘以26么?原题如下(a b)(c d)Write down the larger eigenvalue of the matrix 26M where a =4,b=9 and d=12 请问几个关于矩阵特征值的基本问题1、若矩阵A的特征值为p则xA的特征值为(x为一常数),问题其实就是矩阵乘以常数后特征值是不是也乘以相应常数?2、若A的特征值为a,B的特征值为b,则A-B的 关于线性代数的一道问题设A为3阶矩阵,且已知|3A+2E|=0,则A必有一个特征值为多少 证明 如果一个实对称矩阵A的特征值皆大于0,那么它是正定的 如果向量X是矩阵A的一个非零特征值 关于矩阵不同特征值特征向量问题, 求一题关于特征值的数学证明题设n阶可逆矩阵A的一个特征值为λ,A*是A的伴随矩阵,设|A|=d,证明:d/λ是A*的一个特征值. 有关矩阵秩的证明问题A是一个实对称矩阵,如果t是A的一个k重特征值,那么证明tE-A 的秩为n-k 大一线性代数问题百度上说:若n阶矩阵A有n个相异的特征值,则A与对角矩阵相似,如果一个三阶矩阵特征值0,1,1,其中1是二重的,这三个不是相异,那A就不与对角矩阵相似了吗?