lim n->无穷大时,((1+2½+3ˆ(1∕3)+…)∕n)的极限.请用数列stolz公式做
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:48:16
lim n->无穷大时,((1+2½+3ˆ(1∕3)+…)∕n)的极限.请用数列stolz公式做
lim n->无穷大时,((1+2½+3ˆ(1∕3)+…)∕n)的极限.请用数列stolz公式做
lim n->无穷大时,((1+2½+3ˆ(1∕3)+…)∕n)的极限.请用数列stolz公式做
令An=1+2½+3ˆ(1∕3)+…n^(1/n);Bn=n;
则有
lim n->无穷大时,((1+2½+3ˆ(1∕3)+…)∕n)
= lim n->无穷大时,(A(n+1)-An)/((n+1)-n)
= lim n->无穷大时,n^(1/n)
=1
lim[(n+3)/(n+1))]^(n-2) 【n无穷大】
lim n->无穷大(2^n-1)/(3^n+1)
lim (1+1/2n)^n n趋向于无穷大
lim (2n-1)/(2^n)=?n=>无穷大
lim (1+2/n)^n+4 n-->无穷大 求极限
lim (sin )/(n!+1),当n趋近无穷大时,
lim√1+1/n^2 n趋向于无穷大
lim[1/(n+1)+1/(n+2)+1/(n+3)+、、、1/(n+n)]当n趋于无穷大时的极限?
lim[n/(n*n+1*1)+n/(n*n+2*2)+...+n/(n*n+n*n)],当x趋向无穷大时,怎么求极限,
高数求极限n趋于无穷大时,lim (1/n - sin(1/n))/ (1/n^2),lim (1/n - sin(1/n))/ (1/n^3)这一式子呢求极限n趋于无穷大时,lim (1/n - sin(1/n))/ (1/n^2),lim (1/n - sin(1/n))/ (1/n^3)这一式子呢?
lim n趋于无穷大(1/n^2+3/n^2+.+2n-1/n^2
lim n趋向无穷大3n^3+n^2-3/4n^3+2n+1
求极限lim(n-1)^n/(n-2)^n(n到无穷大)
lim ((n^2+1)^(1/2) /(n+1))^n n无穷大
lim n趋近于无穷大时(根号下n²+2n)-n=?
n趋近于无穷大时,lim(√(n^2+n)-n)
求极限lim n(e^2 –(1+1/n))2^n (n->无穷大)
lim(n∧2)(x∧(1/n)-x∧(1/(1+n)))n无穷大