已知椭圆E x^2/a^2+y^2/b^2=1(a>b>0) 的左右焦点分别为F1,F2,已知椭圆E上任意一点P,满足向量PF1乘以向量PF2大于或等于a^2/2,过F1作垂直于椭圆长轴的弦长为3.1、求椭圆E的方程2、若过F1的直线交椭圆于A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:42:44

已知椭圆E x^2/a^2+y^2/b^2=1(a>b>0) 的左右焦点分别为F1,F2,已知椭圆E上任意一点P,满足向量PF1乘以向量PF2大于或等于a^2/2,过F1作垂直于椭圆长轴的弦长为3.1、求椭圆E的方程2、若过F1的直线交椭圆于A
已知椭圆E x^2/a^2+y^2/b^2=1(a>b>0) 的左右焦点分别为F1,F2,已知椭圆E上任意一点P,满足向量PF1乘以向量PF2大于或等于a^2/2,过F1作垂直于椭圆长轴的弦长为3.
1、求椭圆E的方程
2、若过F1的直线交椭圆于A、B两点,求向量F2A乘以向量F2B的取值范围

已知椭圆E x^2/a^2+y^2/b^2=1(a>b>0) 的左右焦点分别为F1,F2,已知椭圆E上任意一点P,满足向量PF1乘以向量PF2大于或等于a^2/2,过F1作垂直于椭圆长轴的弦长为3.1、求椭圆E的方程2、若过F1的直线交椭圆于A
设P(acosθ,bsinθ),则向量PF1=(-c-acosθ,-bsinθ),向量PF2=(c-acosθ,-bsinθ),
向量PF1*向量PF2=a²cos²θ-c²+b²sin²θ=(a²-b²)cos²θ+b²-c²≥b²-c²
又因为向量PF1*向量PF2≥a²/2,所以a²/2=b²-c² ①,
又过F1作垂直于椭圆长轴的弦长为2b²/a=3,即2b²=3a ②,且c²=a²-b² ③,
解由①②③联立的方程组,得a=2,b=√3,c=1,
所以椭圆E的方程是x²/4+y²/3=1.
当直线AB的斜率存在时,设过F1(-1,0)的直线方程为y=k(x+1),
代入椭圆方程,得(3+4k²)x²+8k²x+4k²-12=0,
设A(x1,y1),B(x2,y2),则x1+x2=-8k²/(3+4k²),x1x2=(4k²-12)/(3+4k²),
y1y2=k²(x1+1)(x2+1)=-9k²/(3+4k²),因F2(1,0),
向量F2A*向量F2B=(x1-1)(x2-1)+y1y2=(7k²-9)/(3+4k²)=7/4-57/[4(4k²+3)]∈[-3,7/4),
当k不存在时,A(-1,3/2),B(-1,-3/2),
则向量F2A*向量F2B=(-2)*(-2)+(3/2)*(-3/2)=4-9/4=7/4,
综上,向量F2A*向量F2B的取值范围是[-3,7/4].

如何从椭圆的一般方程求椭圆的五个参数已知椭圆一般方程为A*x^2+B*x*y+C*y^2+D*x+E*y+F=0,其中A,B,C,D,E,F,均不为0,现在要去求椭圆的中心坐标(x0,y0),椭圆的长半轴a,椭圆的短半轴b,以及椭圆长半轴与X 已知椭圆E的方程为2x平方+y平方=2,过椭圆E的一个焦点的直线l交椭圆于A,B两点,求椭圆E的长轴和短轴的长 圆椎曲线数学题已知椭圆x^/a^+y^/b^=1和直线x/a-y/b=1,椭圆离心率e=根号6/3,直线与坐标原点距离为根号3/2,求椭圆方程 已知椭圆E:x^2/a^2+y^2/b^2=1的离心率为1/2,直线x=2被椭圆E截得的弦长为6,设F的椭圆E的右焦点,A为椭圆E的左顶点.求椭圆E的方程 已知椭圆E的方程为2x平方+y平方=2,过椭圆E的一个焦点的直线l交椭圆于A,B两点,求三角形的面积最大值 已知椭圆E:x^2/9+y^2/4=1,若椭圆E上存在两点A,B关于直线l:y=2x+m对称,求m的取值范围 已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,直线x=2被椭圆E截得斜长为6,设F为椭圆E的右焦点,A为椭圆E的左顶点,(1) 求椭圆E的方程 (2) 求过点A,F,并与直线L:c=a^2/c相切的圆的方程 已知椭圆x^2/a^2+y^2/b^2+1(a>b>0),和圆O:x^2+y^2=b^2,过椭圆上一点P引圆O的两条切线,切点分别为A,B,(1)①若圆O过椭圆的两个焦点,求椭圆的离心率e②若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e的 已知椭圆E:x^2/m+y^2/4=1,对于任意实数k,下列直线被椭圆E所截弦长与l:y=kx+1被椭圆E截得不可能相等的是A kx+y+k=0 B kx-y-1=0 C kx+y-2=0 D kx+y-k=0 已知F1F2是椭圆x^2/a^2+y^2/b^2=1的左右焦点,P是椭圆上一点,且∠F1PF2=90°,则椭圆的的离心率e的取值范围 已知F1,F2为椭圆x^2/a^2+y^2/b^2(a>b>0)的两个焦点,过F2做椭圆的弦AB,若△AF1B的周长 是16,椭圆已知F1,F2为椭圆x^2/a^2+y^2/b^2(a>b>0)的两个焦点,过F2做椭圆的弦AB,若△AF1B的周长 是16,椭圆的离心率e=√3/2(1) 已知椭圆C的左右焦点为F1F2,离心率为e,直线l:y=ex+a与x轴y轴分别交与点A,B已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点为F1F2,离心率为e,直线l:y=ex+a与x轴y轴分别交与点A,B,M是直线与椭圆C的以个公共 【高二数学】已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点为M(0,1),离心率e=√6/3.设直线l与椭圆交与A、B已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点为M(0,1),离心率e=√6/3.设直线l与椭圆交与A、B两点,坐标O 已知椭圆x2/a2+y2/b2=1(a>b>0)的一条准线方程为l:x=2,离心率为e=√2/2,过椭圆的下已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一条准线方程l:x=2,离心率e=二分之根号二,过椭圆的下顶点B(0,-b)任作直线l1与椭圆交于 已知F(c,0)是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点,设b>c,则椭圆的离心率e的取值范围 求离心率e.已知椭圆G方程是a^2/x^2 +b^2/y^2=1,离心率是e,直线l y=ex+a 与x轴、y轴分别交于A、B,M是直线l与椭圆的一个公共点、向量AM=e向量AB,求离心率e. 在平面直角坐标系xoy中,椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别为F1(-c,0),F2(c,0),已知(1,e)和(e,√3/2)都在椭圆上,其中e为椭圆的离心率,则椭圆的方程为( ) 已知椭圆x²/a+y²/4=1的离心率e=1/2,椭圆的长轴在y轴上,则a=?