已知cosβ =a cos(2α+β)=b 则tan(α+β)tanα=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:21:07

已知cosβ =a cos(2α+β)=b 则tan(α+β)tanα=
已知cosβ =a cos(2α+β)=b 则tan(α+β)tanα=

已知cosβ =a cos(2α+β)=b 则tan(α+β)tanα=
cos(2α+β)
=cos[(α+β)+α]
=cos(α+β)·cosα-sin(α+β)·sinα,

[cos(α+β)·cosα-sin(α+β)·sinα]/[cos(α+β)·cosα]
=1-tan(α+β)tanα =b/[cos(α+β)·cosα]

tan(α+β)tanα=1-b/[cos(α+β)·cosα]

cos(α+β)·cosα
=cos[(2α+β)-α]·cosα
=[cos(2α+β)·cosα+sin(2α+β)·sinα]·cosα
=cos(2α+β)·cos^2 α+sin(2α+β)·sinα·cosα
=cos(2α+β)·(1+cos2α) /2 + sin(2α+β)·sin2α /2
=(1/2)·[cos(2α+β)·cos2α + sin(2α+β)·sin2α] +(1/2)·cos(2α+β)
=(1/2)·cos[(2α+β)-2α] +b/2
=(1/2)·cosβ +b/2
=a/2 + b/2
=(a+b)/2
所以,
tan(α+β)tanα=1-b/[cos(α+β)·cosα]
=1-b/[(a+b)/2]
=1-2b/(a+b)
=(a-b)/(a+b)

上式改写为cos(β+α-α)=a cos(β+α+α)=b
然后就很容易了。自己算一算吧