设A矩阵为n维列矩阵乘n维行矩阵,且A矩阵不为零矩阵,证明,A的秩为1(这个不需证),且存在常数k不等于0,使A乘A=kA,为什么k要不为零?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 05:38:13
设A矩阵为n维列矩阵乘n维行矩阵,且A矩阵不为零矩阵,证明,A的秩为1(这个不需证),且存在常数k不等于0,使A乘A=kA,为什么k要不为零?
设A矩阵为n维列矩阵乘n维行矩阵,且A矩阵不为零矩阵,证明,A的秩为1(这个不需证),且存在常数k不等于0,使A乘A=kA,为什么k要不为零?
设A矩阵为n维列矩阵乘n维行矩阵,且A矩阵不为零矩阵,证明,A的秩为1(这个不需证),且存在常数k不等于0,使A乘A=kA,为什么k要不为零?
设A矩阵为n维列矩阵乘n维行矩阵,且A矩阵不为零矩阵,证明,A的秩为1(这个不需证),且存在常数k不等于0,使A乘A=kA,为什么k要不为零?
证明:设矩阵A为n阶非零实对称矩阵,则存在n维列向量X使XTAX不等于0
证明:设矩阵A为n阶非零实对称矩阵,则存在n维列向量X使XTAX不等于0
证明:设矩阵A为n阶非零实对称矩阵,则存在n维列向量X使XTAX不等于0
设矩阵A与P都是n阶矩阵,且A为对称矩阵,证明P'AP也是 对称矩阵.
设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵
设A为m*n矩阵,B为k*n矩阵,且r(A)+r(B)
设A为M乘N的矩阵,且A的秩R(A)=M
设A为m乘n实矩阵,且r(A)=m
设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.
设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.
设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵
设A,B为n阶矩阵,且A为对称矩阵,证明B^TAB也是对称矩阵
设A,B为n阶矩阵,且A为对称矩阵,证明:BTAB也是对称矩阵.
设A,B为n阶矩阵,且A为对称矩阵,证明B^TAB也是对称矩阵
设A为M*N矩阵,且M
设A为m×n矩阵,且m
设m×n实矩阵A的秩为n,证明:矩阵AtA为正定矩阵.