lim2^nsin(x/2^n),n→无穷大,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:41:18
lim2^nsin(x/2^n),n→无穷大,
lim2^nsin(x/2^n),n→无穷大,
lim2^nsin(x/2^n),n→无穷大,
n→无穷大,则x/2^n→0.则sin(x/2^n)等价于x/2^n
所以 lim 2^n·sin(x/2^n) = lim 2^n·(x/2^n)
= x
lim2^nsin(x/2^n),n→无穷大,
两道求极限的高数题第一题lim2^nsin(x/2^n) n趋近于无穷(x为不等于零的常数)第二题limsin (x^n)/(sinx)^n (mn为正整数)
lim2^(n+1)+3^(n+1)/2^n+3^n x趋近无穷~
求(n→∞)lim2^n-a^n/2^n+a^n(a≠-2)
求lim2^n*sin(x/2^n)其中n趋向无穷大
求极限lim2^(n-1)sin(x/2^n) n趋近于无穷
lim2^n +3^n/2^n+1+3^n+1
lim2∧nsin(1/2)∧n,n趋近于负无穷是应该是0啊.为什么书上说的都是趋近无穷,应该分正负,这样就没有极限,左右极限不相等.
lim n 趋近无穷 2^nsin(x/2^n) 为什么是1啊
lim nsin(3x/n)=?n趋向于无穷大
lim2^nsinx/2^n,n--无穷求详解
..n*sin^n-1 x*cosx*cosnx+nsin^n x*(-sinnx)化简是怎么得到nsin^n-1*cos(n+1)x
设lim n→∞ n^[2nsin(1/n)]* an=1,讨论∑an 的敛散性.
求y=sin^nx cos^nx的导数nsin^(n-1)x cos^(n+1)x-nsin^(n+1)x cos^(n-1)x
lim(n-无穷大)nsin(nπ)
lim2^n-3^n/2^n+1+3^n+1rtrtrtrt
极限 lim(x-->无穷)(1/n sin(n)+1/n sin(1/n)+nsin(1/n))求极限lim(x-->无穷)(1/n sin(n)+1/n sin(1/n)+nsin(1/n))
(nsin(1/n))^n^2在n趋近于无穷大时的极限