已知 a,b,c均为正数.证明:a^2+b^2+c^2+(1/a+1/b+1/c)^2 ≥ 6√3请用不等式证明,不要用求导.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:31:10
已知 a,b,c均为正数.证明:a^2+b^2+c^2+(1/a+1/b+1/c)^2 ≥ 6√3请用不等式证明,不要用求导.
已知 a,b,c均为正数.证明:a^2+b^2+c^2+(1/a+1/b+1/c)^2 ≥ 6√3
请用不等式证明,
不要用求导.
已知 a,b,c均为正数.证明:a^2+b^2+c^2+(1/a+1/b+1/c)^2 ≥ 6√3请用不等式证明,不要用求导.
a^2+b^2+c^2+(1/a+1/b+1/c)^2 = a^2+b^2+c^2 + 1/a^2 + 1/b^2+1/c^2 + 2/ab+2/bc+2/ca
=a^2/3 + 1/a^2 + b^2/3 + 1/b^2 + c^2/3 + 1/c^2
+ a^2/3 + 2/ab + b^2/3 + b^2/3 + 2/bc + c^2/3 + c^2/3 + 2/ca + a^2/3
a^2/3 + 1/a^2 >= 2 * √(a^2/3 * 1/a^2)=2/√3
b^2/3 + 1/b^2 >= 2/√3
c^2/3 + 1/c^2 >= 2/√3
a^2/3 + 2/ab + b^2/3 =a^2/3 + 1/ab + 1/ab + b^2/3 >= 4 * 4次根号(1/9) = 4/√3
b^2/3 + 2/bc + c^2/3 >=4/√3
c^2/3 + 2/ca + a^2/3 >=4/√3
所有加起来就是6√3
基本就是均值不等式的灵活运用
就是这个证明
拆开,通分,利用(a+b)^2>=4*ab
已知a+b+c=1,a,b,c均为正数,证明:c^2/a + a^2/b + b^2/c >=1 ?
已知 a,b,c均为正数.证明:a^2+b^2+c^2+(1/a+1/b+1/c)^2 ≥ 6√3
已知a,b,c均为正数,a^2+b^2+c^2=1,证明(a+b+c)^3≤3,例二
请用绝对值的性质证明:已知:a,b,c均为正数.a+b>c,且|a-b|b,|a-c|请用代数的方法证明。
a,b,c,d为正数,证明:(1)a+b
a,b,c,d为正数,证明:(1)a+b
已知三角形三边abc,m为正数,证明:[a/(a+m)]+[b/(b+m)]>[c/(c+m)] 谁能帮证明一下,
已知a,b均为正数,2c>a+b,求证c^2>ab
已知a,b,c属于R,a+b+c>0,ab+bc+ca>0,abc>0,用反证法证明:a,b,c均为正数
均值不等式证明题已知a,b,c,d均为正数,求证:b^2/a+c^2/b+d^2/c+a^2/b>=a+b+c+d
问一道不等式的证明题已知a,b,c均为正数,求证:2[(a+b)/2-(ab)^(1/2)]
已知 a,b,c均为正数.证明:a^2+b^2+c^2+(1/a+1/b+1/c)^2 ≥ 6√3请用不等式证明,不要用求导.
已知a,b,c均为正数 证明a^2+b^2+c^2+(1/a+1/b+1/c)^2大于等于六倍根号三并确定a,b,c为何值时等号成立
不等式 已知 a,b,c均为正数.证明:a^2+b^2+c^2+(1/a+1/b+1/c)^2 ≥ 6√3 ,并确定a,b,c 为何值时,等号成立.
已知a、b、c均为正数,证明:a^2+b^2+c^2+(1/a+1/b+1/c)^2>=6SPR3,并确定a、b、c为何值时,等号成立.
已知a、b、c都是正数,且a+b+c=1,证明:1-2b(a+c)+b2
a,b,c 均为正数,证明1/a+1/b+1/c>=9/{a+b+c}
已知a.b.c是三个正数,证明:a^2*b^2*c^2>=a^b+c*b^a+c*c^a+b