f(x)在[a,b]连续,(a,b)可导,且f(a)=f(b)=0.求在[a,b]至少存在一个§使得:f'(§)=f(x)在[a,b]连续,(a,b)可导,且f(a)=f(b)=0.求在[a,b]至少存在一个§使得:f'(§)= - f(§)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:17:10
f(x)在[a,b]连续,(a,b)可导,且f(a)=f(b)=0.求在[a,b]至少存在一个§使得:f'(§)=f(x)在[a,b]连续,(a,b)可导,且f(a)=f(b)=0.求在[a,b]至少存在一个§使得:f'(§)= - f(§)
f(x)在[a,b]连续,(a,b)可导,且f(a)=f(b)=0.求在[a,b]至少存在一个§使得:f'(§)=
f(x)在[a,b]连续,(a,b)可导,且f(a)=f(b)=0.求在[a,b]至少存在一个§使得:f'(§)= - f(§)
f(x)在[a,b]连续,(a,b)可导,且f(a)=f(b)=0.求在[a,b]至少存在一个§使得:f'(§)=f(x)在[a,b]连续,(a,b)可导,且f(a)=f(b)=0.求在[a,b]至少存在一个§使得:f'(§)= - f(§)
构造函数g(x)=(e^x)*f(x)
显然g(a)=g(b)=0
对g(x)求导:
g'(x)=(e^x)*f(x)+(e^x)*f'(x)
=(e^x)*[f(x)+f'(x)]
由于g(a)=g(b)=0,所以,在[a,b]至少存在一点§,使得g'(§)=0.
也就是(e^§)*[f(§)+f'(§)]=0
又因为e^§始终大于0
所以[f(§)+f'(§)]=0,即:f'(§)= - f(§)
题目有问题。
f(x)在[a,b]连续且可导,a
设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)
F(x)=f(x)/x^2,f(x)在[a,b]连续,在(a,b)可导,如何证明F(x)在[a,b]连续,在(a,b)可导?想不通,因为我基础比较差,
设f(x)在(a,b)内连续可导f'(x)
◆微积分 证明 设f(x)在[a,b]连续,在(a,b)可导,f(a) = 0...
函数f(X)在(a.b)内连续,则f(X)必在(a,b)可导.
f(x)在〔a,b〕连续,在(a,b)可导,f(a)f(b)>0.f(x)在〔a,b〕连续,在(a,b)可导,f(a)f(b)>0证存在ξ∈(a,b)使〔af(b)-bf(a)〕/a-b=f(ξ)- ξf’(ξ) 如题,
f(x)在[a,b]连续,(a,b)可导,且f(a)=f(b)=0.求在[a,b]至少存在一个§使得:f'(§)=f(x)在[a,b]连续,(a,b)可导,且f(a)=f(b)=0.求在[a,b]至少存在一个§使得:f'(§)= - f(§)
f(x)在[a,b]二阶可导,能够说明什么,是否f(x)一阶可导,f(x)连续呢?
f(b)-2f(a+b/2)+f(a)=(b-a)^2/4f''(c)等式证明f(x)在[a,b]上一阶连续可导,在(a,b)内二阶连续可导,证存:存在c属于(a,b)使得f(b)-2f(a+b/2)+f(a)=(b-a)^2/4f''(c)
f在[a,b]上处处可导,f'在[a,b]上一定连续吗?
为什么一般都说闭区间连续开区间可导.如f(x)在[a,b]连续,在(a,b)可导
设f(x)在[a,b]连续,在(a,b)可导,f'(x)≤0,F(x)=[∫(a→x)f(t)dt]/(x-a),证明在(a,b)有F'(x)≤0
设f(x)在区间[a,b]连续,在(a,b)可导,那么f(x)的导数在区间(a,b)上的导数是否连续?怎么证明?或反例?设f(x)在区间[a,b]连续,在(a,b)可导,那么f(x)的导数在区间(a,b)上的导数是否有界?怎么证
证明:f(x)在(a,b)可导连续,f(a)=f(b).至少存在一点m.使f(m)=f'(m)
证明 若f(x)在有限区间内一致连续,则可补充f(a)和f(b),使得f(x)在[a,b]上连续
f(x)在闭区间a,b 上连续 则F(X)=∫a到x (x-t)f(t)dt在开区间a,b内 A必连续但不一定可道 b必可导但F'(X)不一定连续CF'(X)连续但不一定可导 d F(x)二阶可导请问为什么 题目读不懂...
高数(导数与连续性)有一个结论是:如果函数f(x)在(a,b)可导,且f(x)在a点右可导,在b点左可导,则f(x)在[a,b]可导;我想问的是如果f(x)在(a,b)连续,且f(x)在a点左连续,在b点右连续,则f(x)在[a,b]连续