函数y=(x)是定义在R+上的函数,并且满足下面三个条件(1)对任意正数X.Y,都有f(xy)=f(x)+f(y); 2)当x>1时,f(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:06:28

函数y=(x)是定义在R+上的函数,并且满足下面三个条件(1)对任意正数X.Y,都有f(xy)=f(x)+f(y); 2)当x>1时,f(x)
函数y=(x)是定义在R+上的函数,并且满足下面三个条件
(1)对任意正数X.Y,都有f(xy)=f(x)+f(y); 2)当x>1时,f(x)

函数y=(x)是定义在R+上的函数,并且满足下面三个条件(1)对任意正数X.Y,都有f(xy)=f(x)+f(y); 2)当x>1时,f(x)
f(xy)=f(x)+f(y)
令x=y=1得
f(1)=f(1)+f(1)
故f(1)=0
f(9)=f(3×3)=f(3)+f(3)=-2
f(1)=f(1/9×9)=f(1/9)+f(9)
所以f(1/9)=2

已知函数y=f(x)是定义在R上的函数,并且满足f(x+3)=-1/f(x),当1≤x 已知函数y=f(x)是定义在R上的函数,并且满足f(x+3)=-[1/f(x)],当1 定义在R上的函数y=x|x|,则Y是增函数还是减函数 设函数f(x)是定义在R上的函数,且满足f(0)=1并且对任意的实数x,y有f(x-y)=f(x)-y(2设函数f(x)是定义在R上的函数,且满足f(0)=1并且对任意的实数x,y有f(x-y)=f(x)-y(2x-y+1) 求f(x) 设函数y=f(x)是定义在R上的减函数,并且满足f(x+y)=f(x)+f(y),f(1/2)=1 求不等式f(4x)+f(2-x) 设函数y=f(x)是定义在R 上的函数,并且满足下面三个条件:1.对正数x、y都有f(xy)=f(x)+f(y);2.当x>1时,f(x) 函数y=(x)是定义在R+上的函数,并且满足下面三个条件(1)对任意正数X.Y,都有f(xy)=f(x)+f(y); 2)当x>1时,f(x) 已知函数y=f(x)是定义在R上的奇函数,且当x 已知函数y=f(x)是定义在R上的奇函数,当x 设函数y=f(X)是定义在R+上的函数,并且满足下面三个条件:(1)对整数x、y都有f(xy)=f(x)+f(y)...设函数y=f(X)是定义在R+上的函数,并且满足下面三个条件:(1)对整数x、y都有f(xy)=f(x)+f(y);(2)当x> 已知函数y=f(x)是定义在R上的偶函数,当0 设函数y=f(x)是定义在R+上的减函数,并且满足f(xy)=f(x)+f(y),f(1/3)=1 如果f(x)+f(2-x) 设函数y=f(x)是定义在R*上的减函数,并且满足f(xy)=f(x)+f(y),f(1/3)=1,f(x)+f(2-x) 设函数y=f(x)是定义在R上的减函数,并且满足f(xy)=f(x)+f(y),f(3分之1)=1,求f(1)?如果f(x)+f(2-x) 设f(x)是定义在R上的函数,且满足f(0)=1,并且对任意实数x,y,有f(x-y)=f(x)-y(2x-y+1),求f(x)的解析式 设f(x)是定义在R上的函数,且满足f(0)=1,并且对任意实数x,y有f(x-y)=f(x)-y(2x-y+1),求f(x)的解析式. 已知函数y=f(x)是定义在R上增函数,则f(x)=0的根 设f(x)是定义在R上的函数,且满足f(0)=1,并且对任意实数x,y有f(x-y)=f(x)-y(2x-y+1),1.求f(x)的表达式 2.设f(x)是定义在R上的函数,且满足f(0)=1,并且对任意实数x,y有f(x-y)=f(x)-y(2x-y+1),1.求f(x)的表达式