在△ABC中,AB=根号20,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰三角形,求线段CD的长.这道题目的图片试卷上没有.劳烦您们了.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:31:03

在△ABC中,AB=根号20,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰三角形,求线段CD的长.这道题目的图片试卷上没有.劳烦您们了.
在△ABC中,AB=根号20,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰三角形,求线段CD的长.
这道题目的图片试卷上没有.劳烦您们了.

在△ABC中,AB=根号20,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰三角形,求线段CD的长.这道题目的图片试卷上没有.劳烦您们了.

∵AC=4,BC=2,AB=2倍根号5,
∴AC2+BC2=AB2,
∴△ACB为直角三角形,∠ACB=90°.
分三种情况:
如图(1),过点D作DE⊥CB,垂足为点E.
∵DE⊥CB(已知) 
∴∠BED=∠ACB=90°(垂直的定义),
∴∠CAB+∠CBA=90°(直角三角形两锐角互余),
∵△ABD为等腰直角三角形(已知),
∴AB=BD,∠ABD=90°(等腰直角三角形的定义),
∴∠CBA+∠DBE=90°(平角的定义),
∴∠CAB=∠EBD(同角的余角相等),
在△ACB与△BED中,
∵∠ACB=∠BED,∠CAB=∠EBD,AB=BD(已证),
∴△ACB≌△BED(AAS),
∴BE=AC=4,DE=CB=2(全等三角形对应边相等),
∴CE=6(等量代换)

根据勾股定理得:CD=2倍根号10;

如图(2),过点D作DE⊥CA,垂足为点E.
∵BC⊥CA(已知) 
∴∠AED=∠ACB=90°(垂直的定义) 
∴∠EAD+∠EDA=90°(直角三角形两锐角互余)
∵△ABD为等腰直角三角形(已知) 
∴AB=AD,∠BAD=90°(等腰直角三角形的定义)
∴∠CAB+∠DAE=90°(平角的定义)
∴∠BAC=∠ADE(同角的余角相等)
在△ACB与△DEA中,
∵∠ACB=∠DEA(已证)∠CAB=∠EDA(已证) AB=DA(已证)
∴△ACB≌△DEA(AAS) 
∴DE=AC=4,AE=BC=2(全等三角形对应边相等) 
∴CE=6(等量代换)
根据勾股定理得:CD=2倍根号13;

如图(3),过点D作DE⊥CB,垂足为点E,过点A作AF⊥DE,垂足为点F.
∵∠C=90°,
∴∠CAB+∠CBA=90°,
∵∠DAB+∠DBA=90°,
∴∠EBD+∠DAF=90°,
∵∠EBD+∠BDE=90°,∠DAF+∠ADF=90°,
∴∠DBE=∠ADF,
∵∠BED=∠AFD=90°,DB=AD,
∴△AFD≌△DEB,易求CD=3倍根号2.