关于微积分的 麻烦高手来看看a du/dx+3u/x=4/x^3 u(1)=2b dy/dx=(xy+y^2)/(xy-y^2) y(1)=2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:47:42
关于微积分的 麻烦高手来看看a du/dx+3u/x=4/x^3 u(1)=2b dy/dx=(xy+y^2)/(xy-y^2) y(1)=2
关于微积分的 麻烦高手来看看
a du/dx+3u/x=4/x^3 u(1)=2
b dy/dx=(xy+y^2)/(xy-y^2) y(1)=2
关于微积分的 麻烦高手来看看a du/dx+3u/x=4/x^3 u(1)=2b dy/dx=(xy+y^2)/(xy-y^2) y(1)=2
(a)(常数变易解法)
先解原方程的齐次方程du/dx+3u/x=0的通解
∵du/dx+3u/x=0 ==>du/dx=-3u/x
==>du/u=-3dx/x
==>ln│u│=-3ln││+ln│C│ (C是积分常数)
==>u=C/x³
∴齐次方程du/dx+3u/x=0的通解是u=C/x³ (C是积分常数)
∴根据常数变易解法,设原方程的通解为u=C(x)/x³ (C(x)表示关于x的函数)
∵du/dx=[x³C'(x)-3x²C(x)]/x^6=[xC'(x)-3C(x)]/x^4
代入原方程得[xC'(x)-3C(x)]/x^4+3C(x)/x^4=4/x³
==>C'(x)=4
==>C(x)=4x+C (C是积分常数)
∴u=C(x)/x³=(4x+C)/x³
∵ u(1)=2 ==>C=-2
∴原方程的通解是u=(4x-2)/x³
(b)(由齐次方程化为可分离变量方程解法)
∵dy/dx=(xy+y²)/(xy-y²) ==>dy/dx=(1+y/x)/(1-y/x)
∴设t=y/x,则y=xt,dy/dx=xdt/dx+t
代入原方程得xdt/dx+t=(1+t)/(1-t)
==>xdt/dx=(1+t²)/(1-t)
==>(1-t)dt/(1+t²)=dx/x
==>arctant-ln(1+t²)/2=ln│x│-ln│C│ (C是积分常数)
==>arctant=ln│x√(1+t²)/C│
==>x√(1+t²)/C=e^(arctant)
==>x√(1+t²)=Ce^(arctant)
==>x√[1+(y/x)²]=Ce^[arctan(y/x)]
==>√(x²+y²)=Ce^[arctan(y/x)]
∵y(1)=2 ==>√5=Ce^(arctan2) ==>C=√5e^(-arctan2)
∴√(x²+y²)=√5e^(-arctan2)*e^[arctan(y/x)]
=√5e^[arctan(y/x)-arctan2]
∵tan[arctan(y/x)-arctan2]=(y/x-2)/[1+2(y/x)] (应用正切和角公式)
=(y-2x)/(x+2y)
∴arctan(y/x)-arctan2=arctan[(y-2x)/(x+2y)]
∴√(x²+y²)=√5e^{arctan[(y-2x)/(x+2y)]}
==>x²+y²=5e^{2arctan[(y-2x)/(x+2y)]}
故原方程的通解是 x²+y²=5e^{2arctan[(y-2x)/(x+2y)]}.
a u(x)=exp(int(-3/x)(int(4/x^3exp(int(3/x))+c)
=(4x+c)x^(-3),又u(1)=2==>c=-2
==>u(x)=(4x-2)x^(-3)
b 令y/x=p==>dy/dx=d(xp)/dx=p+xdp/dx,带入
p+xdp/dx=(1+p)/(1-p)==>(1-p)dp/(1+p^2)=dx/x
=...
全部展开
a u(x)=exp(int(-3/x)(int(4/x^3exp(int(3/x))+c)
=(4x+c)x^(-3),又u(1)=2==>c=-2
==>u(x)=(4x-2)x^(-3)
b 令y/x=p==>dy/dx=d(xp)/dx=p+xdp/dx,带入
p+xdp/dx=(1+p)/(1-p)==>(1-p)dp/(1+p^2)=dx/x
==>arctan p -1/2*ln(1+p^2)=ln(x)+c
arctan(y/x)-1/2*ln(1+(y/x)^2)=ln(x)+c
又y(1)=2==>c=arctan2-1/2*ln5
==>arctan(y/x)-1/2*ln(1+(y/x)^2)=ln(x)+arctan2-1/2*ln5
收起
上图
a、u[x]=(2*(-1 + 2*x))/x^3}
b、这个方程的解是隐函数形式。
-ArcTan[y[x]/x] + Ln[1 + y[x]^2/x^2]/2 =(-2*ArcTan[2] + Ln[5])/2 - Ln[x]