求级数 1/(2n+1)2^n 的和 (1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:04:18

求级数 1/(2n+1)2^n 的和 (1
求级数 1/(2n+1)2^n 的和 (1

求级数 1/(2n+1)2^n 的和 (1
设S(x)=∑[x^(2n)]/(2n+1),
S(x)=∑[x^(2n+1)]'=[∑x^(2n+1)]'=[(x^3)/(1-x^2)]'
=(3x^2-x^4)/(1-x^2)^2
∑1/(2n+1)2^n=∑[(1/√2)^2n]/(2n+1)=S(1/√2)=(3*(1/2)-(1/4))/(1-(1/2))^2=5

|x|<1时
f(x)=∑_{n=1->无穷}x^(2n)=x^2∑_{n=1->无穷}(x^2)^(n-1)=x^2/(1-x^2)=[x^2-1+1]/(1-x^2)
=-1 + 1/[(1-x)(1+x)] = -1 + (1/2)[1/(1-x) + 1/(1+x)]
= -1 + (1/2)/(1-x) + (1/2)/(1+x)
g(x)=∫_{t:0-...

全部展开

|x|<1时
f(x)=∑_{n=1->无穷}x^(2n)=x^2∑_{n=1->无穷}(x^2)^(n-1)=x^2/(1-x^2)=[x^2-1+1]/(1-x^2)
=-1 + 1/[(1-x)(1+x)] = -1 + (1/2)[1/(1-x) + 1/(1+x)]
= -1 + (1/2)/(1-x) + (1/2)/(1+x)
g(x)=∫_{t:0->x}f(t)dt=∫_{t:0->x}{∑_{n=1->无穷}t^(2n)}dt= ∫_{t:0->x}{-1 + (1/2)/(1-x) + (1/2)/(1+x)
}dt
= -x -(1/2)ln(1-x) +(1/2)ln(1+x)
又,
g(x)=∫_{t:0->x}{∑_{n=1->无穷}t^(2n)}dt = ∑_{n=1->无穷}∫_{t:0->x}t^(2n)}dt
= ∑_{n=1->无穷}x^(2n+1)/(2n+1)
因此,
|x|<1时,
∑_{n=1->无穷}x^(2n+1)/(2n+1) = -x -(1/2)ln(1-x) +(1/2)ln(1+x)
令x=(1/2)^(1/2)
∑_{n=1->无穷}(1/2)^[(2n+1)/2]/(2n+1) = -(1/2)^(1/2) - (1/2)ln[1-(1/2)^(1/2)] + (1/2) ln[1+(1/2)^(1/2)]
(1/2)^(1/2)∑_{n=1->无穷}(1/2)^n/(2n+1) = ∑_{n=1->无穷}(1/2)^[(2n+1)/2]/(2n+1)
∑_{n=1->无穷}(1/2)^n/(2n+1) = 2^(1/2) ∑_{n=1->无穷}(1/2)^[(2n+1)/2]/(2n+1)
=[2^(1/2)]{-(1/2)^(1/2) - (1/2)ln[1-(1/2)^(1/2)] + (1/2) ln[1+(1/2)^(1/2)]
}
= -1 - 1/2^(1/2) ln[1-1/2^(1/2)] + 1/2^(1/2) ln[1+1/2^(1/2)]

收起

把2看成根2的平方就好做了

同求答案啊。。。做了好久也没做出来。。。。。
等明天问老师。。。。答案倒是有。。。万恶的高数练习册。。。。。呵呵 问出来了别忘了告诉我 谢谢啦!我问了老师了。。。。不过也没给出确切的。。。大概方法有的。。。 令f(x)=x^()2n/(2n(2n+1)) 最好一项一项写出来。。看下规律。,。。。发现求导两次后刚好就是x+x2+x3...求和。。。求出来后求出对x的二次积分...

全部展开

同求答案啊。。。做了好久也没做出来。。。。。
等明天问老师。。。。答案倒是有。。。万恶的高数练习册。。。。。

收起